Using a CAMA approach to model energy efficiency in housing

Dr P Davis, Dr W McCluskey, Dr E Montgomery, Dr LC Lim, Dr M McCord, Dr M Haran, Dr D McIlhatton

- Buildings are responsible for almost 50%
 - of the UK's energy consumption
 - and carbon emissions
- Even comparatively minor changes
 - in the energy performance of buildings
 - In the way we use each building
 - could have a significant effect
 - energy consumption
 - in reducing carbon emissions

- The UK Governments supports the Kyoto Protocol
 - This has led to the setting of challenging targets
 - for the reduction of carbon emissions
- In order to meet these targets
 - Reducing the energy consumption
 - attributable to buildings
 - is a Government key policy objective

- Since 30th December 2008 all properties
 - homes and commercial
 - when constructed or being marketed for sale or rent
 - require an energy performance certificate (EPC)
 - Existing buildings can be assessed under rdSAP 2005 (a simplified assessment process)
- This initiative is the result of European legislation
 - the Energy Performance of Buildings Directive
 - which all member states were required to adopt

- The Department of Finance and Personnel is responsible for measures in Northern Ireland
 - to improve the energy efficiency of buildings, including:
 - energy performance certificates for properties providing A-G efficiency ratings and recommendations for improvement
 - public buildings to display energy certificates
 - inspections for air conditioning systems
 - giving advice and guidance for boiler users

What affects energy consumption?

- Housing characteristics
- User activity
- Location
- Climate
- Etc.
- Very similar to the housing attributes used to estimate market value
- At least at a "high level"

Motivation for our research

- The quantity of buildings transacting
 - In any time period
 - Is relatively small
 - Against the total population
- ▶ EPC lead in time for wide residential coverage
 - Is likely to be considerable
- Effective asset management of the domestic housing stock
 - Cannot wait for this process to mature!
 - Can some high level research help guide policy and decision making?

Energy Research

- £20,000 seed funding awarded by EST under the Northern Ireland Project Fund
- To bring together a dataset of property related data
 - 700,000 + property records from LPS (every domestic dwelling in NI
 - Matched to 300,000 plus property records from EST & NIHE
 - Allowing wide range of research and policy impact analysis
 - Initial project to estimate energy efficiency of NI housing stock, identifying hotspots of poor performance

Future plan

- Subsequent work includes modelling policy options
 - such as extending gas supply
 - analysing effect on value of green features
 - building evidence for evolution and "greening" of property tax policy
- High level support from DFPNI, NIHE and EST
 - has enabled this
 - built on our track record of policy analysis for the DFPNI, DOE and NI Assembly
 - Review of Rating, RPA and Bain Review
- Current status
 - · data now matched, beginning initial analysis
- Expectation of ongoing research output
 - additional funding from future instructions utilising the data set

Initial Modelling

- Current database contains
 - 710,000 properties
 - 140 property attributes
- If all fields were completed
 - Full rdSAP 2005 could be calculated
 - For every property in Northern Ireland
- Unfortunately
 - Life is not that simple!

What have we got?

- Good quality data from property tax records
 - Addresses, house type/era/size/rooms/assessed value/ etc.
 - Less robust on features such as heating type/ glazing
- Very "patchy" energy data from EST and other sources
 - Level of insulation/boiler type/heating controls/etc.
- No clearly identified "summary" variable
 - to become the "dependant"
 - in regression type modelling

Possible approaches

- Obtain a representative sample
 - of accurate energy estimate figures
 - Such as properties with Energy Performance Certificates
 - EPC's
 - Specifically, the CO₂ kg m²pa
 - · Which allows a discrete energy figure to be calculated
 - · Rather than an allocation to a broad band
 - And allows the impact to be assessed
 - As larger band B properties
 - Will have a higher score
 - Than smaller band B properties
 - Rather than simply having an attribute of "B"

Planned approach

- Approach 1
 - Obtain access to NI EPC database
 - Difficult!
 - One more "pothole" in the road!
 - Success to date gives some hope!
 - Although achieved with considerable "pain"!
 - Enquiries very positive!
 - Merge EPC scores with our database
 - Difficult!
 - One more pothole in the road!
 - 80%+ match on EST/LPS data achieved gives us hope!

Planned Approach

- Use EPC holding properties as the sample
 - Create a discrete energy assessment for each property
 - By multiplying score for CO₂ kg m²
 - By actual measured area in m² for each property
 - Undertake a range of regression approaches
 - OLS, GWR
 - To estimate the EPC derived energy assessment
 - From the basket of available attributes
 - Limited to those well populated in the population of properties
- Use the results from the modelling to assess the rest of the properties
 - Following a "Computer Assisted Mass Appraisal" approach

Caveats

- The Planned approach has a "timing" related drawback
 - EPC's only date back to 2008
 - Market has been very slow
 - Limiting the *number* of properties with EPC's for sale purposes
 - Limiting the geographical range and type/age coverage
- Rental market has been strong however
 - Improving number of EPC's available from lettings
 - 8000+ lettings in Belfast Metropolitan Area in 2010
 - See our other paper happening now next door!!
 - All "Warm Home Scheme" affected properties included

Alternate Approach

- 2. In the absence of "hard" EPC data
 - Select a representative sample of the properties
 - Utilise industry standard EPC estimation software
 - Eg rdSapper, Elmhurst etc.
 - To "calculate" EPC's for sample properties
 - Using the data contained in the database
 - Additional enrichment from available sources
 - Some inspections
 - Expert knowledge on typical attribute scores / parameters
 - A range of robust estimations

Typical EPC rdSAP software

Alternate Approach

- Once the EPC scores have been derived for the sample
 - The process of modelling reverts to the planned approach
 - Regression analysis
 - Application to the entire data set
- Limitations
 - Accuracy of EPC estimation
 - In this type of exercise
 - Time cost
 - To find, check, fill etc.

Initial Exploratory Approach

- Initial "robust" modelling has been undertaken
 - To "test the water"
 - And demonstrate the analytic and explanatory power
 - of the underlying dataset
 - To help identify the potential of the project
 - To augment policy development

Exploratory Approach

- The initial modelling exercise
 - Identifies a set of 30 "typologies"
 - Within which each property in the data set is placed
- Exclusions
 - Usual data cleaning was carried out
 - · To remove outliers which are poorly represented
 - Or appear to be faulty
 - Such as "Castle"
 - floor are >400 m²
 - Floor area <40 m²
 - Removing flats/apartments
 - Worst affected by current data match
 - · However probably well represented in EPC terms
 - Will be included as research develops

Typologies

- 30 Property Typologies devised
 - Driven by categories on the LPS (Property Tax) data
- 6 Property "type" categories
 - Detached House
 - Semi Detached House
 - Terraced House
 - Detached Bungalow
 - Semi Detached Bungalow
 - Terraced Bungalow
 - (very few!)
- 5 age band categories
 - From pre 1919 to present day
- \bullet 6 times 5 = 30!

Energy score

- A variety of data sources have been considered
- ▶ To estimate a robust CO₂ Kg m² pa figure
 - for each typology
 - in its deemed "average" condition
 - In its deemed "best cost effective improved" condition
- These figures are then applied
 - To the floor area data
 - To create a discrete CO₂ Kg m² pa "before" and "after" figure
 - for each property in the database
- Whilst fairly "rough and ready"
 - It does calculation of a "reasonable" level of "relative performance"
 - And potential gain in performance on improvement
 - To be calculated and mapped

Overall level analysis

- Analysis of the overall level analysis
 - Indicates large "heat Island" effect of urban areas
 - Reflecting the density of development
 - And density of energy consumption
 - Indications are that at this level of analysis
 - Most benefit can be gained by improving performance
 - Of property in urban areas
 - Notably Belfast!

Median level analysis

- Median level analysis
 - Teases out a different story
 - On average, urban properties are "greener"
 - Rural areas suffering from "Bungalowification" effect!!!
 - Indications are that at this level of analysis
 - On a case by case basis
 - Most benefit can be gained by improving performance
 - Of property in rural areas Clearly identifies a difference between
 - Areas which consume a lot of energy
 - Areas with properties that consume a lot of energy

Initial findings

- Drilling down into a Ward Level analysis
- Overall pattern less clear
 - Urban areas still do better
 - "patchwork quilt" effect!
- Identifies urban areas
 - Good, average, bad
- Identifies rural areas
 - Good, average, bad
- Harder to generalise good for targeting!

Initial outcomes

- The emerging findings suggest the data
 - · Can provide useful "high level" intelligence
 - About the geographical dispersion of energy efficiency
 - Potential to identify key locales where there is
 - More of a problem
 - More to gain
- Improving the rigour of the modelling will hopefully augment
 - predictive accuracy
 - Analytic power

Practical application

- This could be useful in a variety of ways
 - targeting advertising of energy schemes
 - In selecting *mode* for example
 - TV/Radio/Newspaper in Urban areas (more to cover)?
 - Targeted mail shot to rural (More to gain)?
 - Obvious? Perhaps but here is some evidence!
 - Tailoring message to appropriate user groups
 - User behaviour message
 - · where performance of stock good
 - Asset improvement message
 - Where performance of stock weak
- Improving knowledge of the stock to facilitate
 - Greening of property tax
 - "Green Deal"

Thank You for Listening!!