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Abstract 
 
Purpose – The purpose of the paper is to verify whether the version of neighbourhoods 
created from the lowest geographical level improve a predictive accuracy of hedonic 
model in comparison with those based on upper geographical levels. 
 
Methodology/approach – The paper proposes a method for defining neighbourhoods 
from Thiessen polygons created around the points of apartments. These polygons occupy 
the whole analysed area and are used as the spatial units for clustering. The clustering 
technique is based on contiguity of polygons and fuzzy equality of the principal 
components of their attributes. Clustering is started at different geographical levels: 
municipalities, smaller traffic analysis zones, and apartments’ Thiessen polygons. The 
ordinary least squares (OLS) and spatial error techniques are applied in hedonic price 
models with different versions of neighbourhoods.  
 
Originality/value – Neighbourhoods can be defined using the Thiessen polygons of 
individual observations. This very “bottom up” approach can minimise dependency from 
existing political, administrative and other boundaries. The clustering technique is based 
on fuzzy equality and does not need the a priori determination of a number of clusters, 
while contiguity and hierarchical nature of neighbourhoods are considered.  
 
Findings – With OLS regression, the superiority of Thiessen polygons is evident in both 
in-sample analysis and ex-sample prediction. When we control for spatial effect with a 
spatial error technique, the clusters of Thiessen polygons do not always provide the best 
outcome, and their superiority is contested by the highest geographical level of 
municipalities.  
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1. Introduction 
 
Since the appearance of the seminal paper of Rosen (1974)1, a hedonic price model is 
widely exploited by public administration, business and academia to estimate the 
willingness to pay for different attributes. In the real estate domain, the popularity of this 
methodology used for mass valuation can be explained by its applicability in urban 
planning, property tax assessment, mortgage loan support and price indices calculation to 
name just several applications.  
 
In a hedonic price model, the dependent variable is usually a sale price of real estate and 
the explanatory variables are sale date, structure description and location data. In this 
study we place emphasis on location. Heterogeneity of space and complexity of its 
perception exemplify the fact that the analyses of “location, location, location” in the 
hedonic context are very rich and many-sided.  
 
The influence of different positive and negative externalities on property value can be 
measured with distance or travel time variables. However, Ross et al. (2009) have 
highlighted the common inability to fit more than two distance variables in hedonic 
model arguing that two points in space triangulate the optimal position by fundamental 
geometry. 
 
This study addresses the issue of location in a hedonic price model focusing on the 
detection of neighbourhoods, within which identical properties can be seen as reasonably 
close substitutes. Differently from the concept of geographical submarkets, where 
separate hedonic models are calibrated, neighbourhoods are included in an overall 
regression model either as binary (dummy) variables or as the variables of interaction of 
neighbourhood dummies with some neighbourhood attributes, as e.g. average living area 
and age in Fletcher et al. (2000).  
 
There are, among others, two kinds of problems with submarkets and neighbourhoods 
identification. First, formal clustering methods are not always applied, and even if they 
are used, they need a number of clusters to be specified a priori, which leads to multiple 
experiments to find an optimal number. Second, very few studies start at the lowest 
possible geographical level, i.e. at the level of individual properties; more often such 
existing territorial units as administrative districts or census tracks are used as a 
geographical base.  
  
To increase the degree of objectivity in a neighbourhood delineation process and its 
independence from existing territorial units, in this study we propose a formal clustering 
method based on fuzzy equality and started at the level of individual observations. We 
admit however that it is hardly possible to be completely independent from the existing 
fixed boundaries, first and foremost because statistical data are collected within them.  
 

                                                 
1 Though there were several predecessors, e.g. Pendleton (1965), the impact of their works was not as 
resounded as of the theoretically solid paper of Rosen, which is a standard reference in the hedonic price 
literature.  



In the proposed method, Thiessen polygons are created around the points of observations. 
This transformation from points to polygons has two advantages: it allows, first, 
occupying the whole analysed territory, and second, applying the concept of contiguity. 
When a sample is divided into one part for estimation (the in-sample) and the other part 
for prediction evaluation (the ex-sample), the former issue is important, because all the 
ex-sample points can geographically belong to clusters already established by the in-
sample observations. The later issue can be exploited for pure geographical clustering 
taking into account polygonal boundaries.   
 
The clustering technique is based on fuzzy equality of polygon attributes and contiguity 
of polygons. The procedure itself determines a number of clusters. The hierarchical 
nature of neighbourhoods is mirrored in the iterative process of clustering.  
 
In hedonic regression modelling, ordinary least squares (OLS) and spatial error 
methodologies are applied with an in-sample analysis and ex-sample prediction. While 
model performance is important for understanding the impact of different attributes on 
sale price, in the academic literature the emphasis has been shifted to out-of-sampling 
predictive accuracy (e.g. Bourassa et al., 2003; Case et al., 2004; Wilhelmsson, 2004), 
which is particularly important in tax assessment and other cases when good prediction is 
necessary.  
 
The purpose of the paper is to verify whether the version of neighbourhoods based on the 
lowest geographical level improve a predictive accuracy of hedonic model in comparison 
with those based on upper geographical levels. Thus, bigger territorial units of 
municipalities and traffic analysis zones are exploited as base spatial units for clustering 
to detect the alternative versions of neighbourhoods.  
 
We admit that the analysed area, which is the adjacent cities of Lyon and Villeurbanne, is 
large enough to be an object of market segmentation. Nevertheless, in this study, we limit 
ourselves by the delineation of neighbourhoods and do not deal with submarkets. It is 
related to the peculiarities of the proposed method, which is often unable to unite more 
than a few observations. Moreover, in contrast to most of studies of market segmentation 
and neighbourhoods exploring individual housing markets, we analyse apartment market. 
Apartments in the same apartment block can be very different not only by their surface or 
number of rooms, but also by the level of street noise around the different sides of a 
block, apartment state due to individual approaches to maintenance, etc.   
 
The rest of the paper is organised as follows. The next section is literature review, mainly 
focused on geographical market segmentation and neighbourhood delineation. The third 
section describes in detail the proposed clustering method. The fourth section is about the 
study area and data used. Sections five and six are devoted to the application of the 
proposed method: clustering of Thiessen polygons and other territorial units, and 
incorporation of neighbourhoods in hedonic models respectively. The final section 
concludes.  
 



2. Literature review 
 
A comprehensive overview of the literature on location influence patterns in mass 
valuation can be found in the doctoral dissertation of Borst (2007). According to him, the 
most straightforward approach is to divide the universe of properties into subgroups for 
which the effects of location is similar. The two widely applied techniques are market 
segmentation and neighbourhood delineation. Because a sort of confusion exists in the 
literature in respect to the notions of submarkets and neighbourhoods, it is important to 
note that in this study we use the following definitions. In each geographical segment 
(submarket) detected with spatially-based or characteristics-based methods, a separate 
hedonic model is estimated; and these models might provide better results than one 
overall model. Neighbourhood is a smaller area within a market segment where market 
influences are relatively constant (Borst, 2007). The general assumption is that identical 
properties located in the same submarket and neighbourhood, are substitutes.  
 
In hedonic price literature, market segmentation has been understood since 1970s (e.g. 
Morton, 1976) as a technique capable to add significant variables and improve prediction 
accuracy. At the same time, it can lead to problems with model explainability. As 
Watkins (2001) notes in his comprehensive study of submarkets, the term “submarket” is 
subject to a range of definitions, and empirical analyses have employed differing tests. 
Des Rosier (1991) admits that in the analysed literature there is neither the consensus on 
the optimal level of market segmentation nor the criteria to define submarkets. While 
different measures are applied, e.g. standard error, F-test or prediction accuracy, the 
general principle is that hedonic results with segmentation should be better than without 
it. Many studies discuss prediction accuracy, but few provide results of ex-sample 
estimation, which is a true test of predictive capacity. Among them are Goodman and 
Thiebodeau (2003), Bourassa et al. (2003) and Bourassa et al. (2010).  
 
Segmentation can be aspatial, spatial and nested. The first usually considers structural 
property attributes. A specific example of aspatial market segmentation is the application 
of a Kohonen self organising map, which is an artificial neuron network, for obtaining the 
relative positions of nodes in a low-dimensional attribute space (Jenkins et al., 1998; 
Lewis et al., 2001, Kauko, 2003). In studies with spatial market segmentation, cluster 
analysis is applied quite often (e.g. Des Rosiers, 1991; Fuller and Huang, 2003; Case et 
al., 2004). An example of nested spatial/structural submarkets delineation is Watkins 
(2001), whose result show that submarkets should be based on both structural and spatial 
characteristics.   
 
Goodman and Thibodeau (1998) define housing submarkets as geographical areas where 
the price of housing (per unit of service) is constant and individual housing 
characteristics are available for purchase. They introduce the concept of hierarchical 
linear modelling, in which structural attributes, location variables and submarkets interact 
to influence house price. Goodman and Thibodeau (2003) emphasise the importance of 
contiguity and hierarchical nature of submarkets.  
 



The approach to market segmentation proposed by Borst and McCluskey (2007) has been 
started at an individual property level. Geographically weighted regression (GWR) 
creates a hedonic equation for each property. The market basket value is calculated for 
each observation by the estimated GWR model at the mean value of the attributes across 
the study area. The groups of properties with similar market basket values are the 
candidates for submarkets. Market segments are identified by dividing the range of 
market basket values with Jenks optimisation, or goodness of variance fit, see Smith 
(1986). Each submarket can consist of one or more spatial parts. Though Borst and 
McCluskey illustrate the process with a three-dimensional surface of market basket 
values, spatial proximity or contiguity of sample properties is not actually taken into 
account.  
 
A relatively often used technique is a combination of factor analysis or principal 
component analysis (PCA) and cluster analysis. The extracted factors or principal 
components are used as data for clustering to determine submarkets and include them in a 
hedonic price equation. For this purpose, Dale-Johnson (1982) apply Q-factor analysis, 
whereas Maclennan and Tu (1996), Bourassa et al. (1999) and Bourassa et al. (2003) 
exploit PCA. For example, Bourassa et al. (2003) find out that the best results are 
obtained when cluster analysis is based on the two most important components. 
 
The other application of PCA in hedonic modelling of real estate prices is proposed by 
Des Rosiers et al. (2000). The mentioned study as well as Des Rosiers and Thériault 
(2008) and Des Rosiers et al. (2010) use PCA-derived scores of travel times to regional 
and local services in a regression model as substitutes for initial variables. This approach 
has been followed in the previous hedonic price model of our study area (Bonnafous and 
Kryvobokov, 2011); nevertheless, the global OLS and GWR models with principal 
components of location attributes does not demonstrate superiority over the specifications 
with a few location variables.  
 
Des Rosiers et al. (2010) account for endogenous interactions (peer) effects and 
exogenous (neighbourhood) effects, as well as for spatial autocorrelation. The peer effect 
is analysed in their OLS and spatial error models for each observation as a mean housing 
price in any given submarket in previous quarter, while a sale price of the observation is 
excluded from the computation. Submarkets are derived with a discriminant analysis. 
Their approach has some similarity with a spatial lag model with autoregressed 
dependent variable, but also includes a temporal lag. This is conceptually similar to a 
spatio-temporal measure of spatial dependence proposed by Dubé and Legros (2010).  
 
Gonzáles and Formoso (2006) and Gonzáles (2008) argue that in many cases submarkets 
are not clearly divided into crisp and homogenous parts; as an alternative, fuzzy rule-
based systems with neural network and genetic algorithms are applied. In their 
applications, X and Y coordinates of centroids of each property are exploited.  
 
As Borst (2007) notes, in comparison with the definition of submarket, less attention is 
paid to the definition of neighbourhood. Nevertheless, neighbourhoods are commonly 
used in hedonic models, mainly as dummy variables. Some recent examples are Clapp 



and Wang (2006) and Gouriéroux and Laferrère (2009). Ideally, neighbourhood 
delineation should be independent from the existing boundaries of administrative units, 
census tracks and other established areas; however, available data are usually by 
definition collected for the mentioned types of units, so it is hardly possible to avoid their 
influence. Dubin (1992), Goodman and Thibodeau (1998) and Borst (2007) discuss the 
problem of subjectivity in neighbourhood delineation and the lack of formal approach. In 
property assessment literature, the use of existing fixed boundaries is criticised as well 
(e.g. Figueroa, 1999; Ward et al., 2002).  
 
Bourassa et al. (2003) obtain the best prediction accuracy with a citywide equation with 
dummies for spatial submarkets (which we can understand rather as neighbourhoods) and 
adjustment by neighbouring residuals. Similarly, Fletcher et al. (2000) find that dummies 
for submarkets (in fact neighbourhoods) provide slightly superior predictions than 
separate equations. Bourassa et al. (2007) conclude that a hedonic model with submarket 
dummy variables (i.e. neighbourhoods) is substantially easier to implement than 
geostatistical or lattice methods.  
 
Clapp and Wang (2006) propose to group individual properties into neighbourhoods 
applying the classification and regression trees. In their study the purpose is not to find 
the optimal division of area into neighbourhoods in order to improve a hedonic model, 
but rather to use hedonic regression as one of the stages to define the optimal number of 
neighbourhoods.  
 
Wilhelmsson (2004) proposes to define neighbourhoods (naming them submarkets) with 
cluster analysis of the OLS positive and negative residuals. Using the Ward 
approximation technique, the author claims that this method does not need to specify a 
number of clusters a priori. In fact this technique starts with each observation as initial 
cluster and at each step unites two clusters, so the number of steps should be pre-
specified, as he is actually doing by creating 10, 20, 30 clusters, etc. The clusters, which 
can be overlapping, are then incorporated into OLS regression as dummies. The 
advantage of this approach is that it is formal and based on individual observations. The 
important finding of Wilhelmsson, different from the conclusion of Goodman and 
Thiebodeau (2003) in respect to submarkets that “smaller is better”, is that a predictive 
performance is not always increasing when neighbourhoods are added to the model, but it 
is reduced if the neighbourhoods are too small and too numerous, e.g. 100 
neighbourhoods provide better result than 110 neighbourhoods. Thus, Wilhelmsson 
discusses a trade-off between reducing spatial dependency and increasing predictive 
power. The other interesting point is the illustration of high correlation between distance 
to the CBD and neighbourhoods’ dummies: if the number of neighbourhoods exceeds 90, 
the distance variable becomes insignificant.  
 

3. Clustering method 
 

In this section, the principles of the proposed clustering method are described. The logic 
behind it is to start at the lowest possible geographical level and to minimise the 
dependency from existing territorial units.  



 
The lowest geographical level is formed by observations for a hedonic regression model, 
i.e. by individual properties, which in GIS terms can represent either polygons of land 
parcels or points of their centroids. If the data on land parcels’ boundaries are available, 
these polygons usually cover only a small portion of an analysed area, which is not 
enough for a geographically continuous representation. These parcels are rather islands 
with few, if any, neighbours. The points of centroids by their nature also cannot be 
described in terms of continuity. If to create the non-continuous clusters of the in-sample 
observations, we could find ourselves in a problematic position concerning the ex-sample 
observations: in order to belong to one or another cluster, the ex-sample points or 
polygons might be added to the in-sample during clustering, which breaks the principle of 
a pure in-sample approach and distorts a result of clustering and further analysis.  
 
We formulate our task as a transition from a discontinuous or discrete representation to a 
continuous plane or surface. For this, GIS tools propose different ways of interpolation, 
in particular the creation of a raster map or a three-dimensional surface. For us, however, 
the existence of boundaries is important as a potential for a further geographical 
clustering. It is also better to avoid a substantial increase in the number of initial 
territorial units like small gridcells. Therefore it seems appropriate to apply the technique 
of creating Thiessen polygons2 around each centroid. Any location within Thiessen 
polygon is closer to its input point than to the input point of any other polygon (see 
Figure 1 as illustration). The polygons constructed with a triangulated irregular network 
totally cover an analysed area.  
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Figure 1. Thiessen polygons created around the points of observations 

 
 
The next step is to find the clusters of Thiessen polygons, i.e. neighbourhoods. Adjacent 
polygons, provided that they are recognised as similar, can be united. The crucial point is 
                                                 
2 The Thiessen polygon tool available in ArcGIS is exploited. The other names of the technique are 
Voronoi diagrams and Dirichlet tessellations.  



a measure of similarity. For this, we propose to apply a fuzzy sets theory and calculate a 
fuzzy equality of the attributes of polygons.  
 
In fuzzy sets, a membership function is specified as a continuous range [0,1], not (0,1) as 
for crisp sets. With normalizing, crisp inputs for attributes are converted to the values of a 
fuzzy membership function. For example, the attribute “population” ranging from 10 to 
100 inhabitants for different polygons can be converted into the fuzzy membership 
function “highly populated” with the minimum of 0 (for polygon with 10 inhabitants) and 
the maximum of 1 (for polygon with 100 inhabitants). After this simple fuzzyfication the 
polygons are represented as fuzzy sets. The formal view of a fuzzy set A~  is the 
following:  
 

{ }xxA A /)(~ μ= , 
 
where x  – attribute,  

)(xAμ  – membership function, [ ]1,0)( ∈xAμ .  
 

Fuzzy set can consist of multiple attributes x  characterising polygons. Melikhov et al. 
(1990) describe the following measure of fuzzy equality of two fuzzy sets A~  and B~ :  
  

))()(&()~,~( xxBA BA μμμ ↔= , 
 
where  – equivalence, ↔ )),1max(),,1min(max( cddcdc −−=↔ ; 
&  – conjunction,  . ),min(& dcdc =
 
If  then the sets 5.0)~,~( ≥BAμ A~  and B~  are fuzzy equal3. The property of transitivity 
allows finding more than two fuzzy equal sets that in our case means uniting into clusters 
more than two polygons.  
 
Our additional condition of uniting two polygons is their adjacency, i.e. existence of a 
common boundary. Thus, if adjacent polygons are fuzzy equal, they are united. The 
algorithm starts with the highest fuzzy equality among all the adjacent cases. A number 
of clusters is determined by the technique itself. This can be regarded as an advantage in 
comparison with the widely applied Ward’s and K-means algorithms (see e.g. Bourassa et 
al., 1999 or Wilhelmsson, 2004). On the other hand, the proposed technique is 
completely based on the fuzzy equality measure and does not account for statistical 
verification. Using this algorithm, a GIS script for clustering has been created. The 
algorithm can be applied iteratively, with creating bigger neighbourhoods from smaller 
ones, which corresponds to their hierarchical nature. The process stops when no more 
fuzzy equal sets are found among adjacent polygons.  
 

                                                 
3 In this application, we do not consider the case of equality to 0.5, i.e. fuzzy indifference, as fuzzy equality.  



4. Data 
 
This study analyses the apartment market in Lyon and Villeurbanne. These adjacent cities 
with overall population of over 600 thousand inhabitants have a common planning 
structure and transportation network and make up the core of the Lyon Urban Area, 
which is the second largest agglomeration by population in France. More detailed 
description of the apartment market can be found in Bonnafous and Kryvobokov (2011).  
 
Administratively, Lyon is divided into nine arrondissements, whose numbers are 
presented in Figure 2, while Villeurbanne does not have such division. Villeurbanne as a 
whole and arrondissements of Lyon are hereafter referred to as municipalities. At the 
lower level, in the study area there are 230 IRISes4 – statistical units, used also as traffic 
analysis zones; for short, they are referred to as zones.  
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Figure 2. Location of the in-sample apartments 

 
The Perval dataset is used, which contains the data on apartment sales in Lyon and 
Villeurbanne in 1997-2008. The observations with missing data, with prices lower than 
20,000 euros and higher than 500,000 euros, with area less than 20 square metres and 
more than 200 square metres were deleted. The sample consists of 3,159 apartments. This 

                                                 
4 Les îlots regroupés pour l’information statistique. 



sample is randomly divided into two parts: the in-sample (80%, 2,527 observations) 
(Figure 2) and the ex-sample (20%, 632 observations).  
 
We use years of transaction as dummies, structural variables and location attributes. The 
definitions of apartment variables and their description for the in-sample are presented in 
Table 1. Distribution of sales by years varies from 2% for 1997 to 14% for 2002. 
Structure is described with the attributes of building age, apartment area, dummies for 
floor, number of bathrooms, number of parking places, state of apartment, quality of 
view, number of cellars, and existence of garden and terrace. Number of rooms is not 
described, because their dummies are highly correlated with apartment area and are 
insignificant if included in the hedonic model.  
 
Building age is estimated as follows. There are seven construction periods available: 
before 1850; 1850-1913; 1914-1947; 1948-1969; 1970-1980; 1981-1991; and 1992 and 
later. We assume that a mean for the first construction period is 1800 and for the last 
period is 2000 and calculate the variable Building_Age as a difference between the year 
2000 and the means of the earlier periods. For example, Building_Age for the second 
period is equal to 2000-1882=118. In the in-sample, 93% of the apartments have one 
bathroom, while three bathrooms exist in less than 1% of apartments. As much as 82% of 
apartments are described in the Perval database as having good state. For half of 
apartments, the existence of one parking pace is reported. Many observations contain no 
data about the number of parking places and quality of view; therefore, the specific 
dummy variables are created.  
 
The location attributes (Table 2) include the socio-geographical attributes of the 
percentages of low- and high-income households in zones and travel times to urban 
centres in minutes. The income groups are composed each of the 20% households in the 
income range with the lowest and the highest income respectively. Travel times for the 
travel by car between zones in the morning peak were obtained from the MOSART5 
transportation model for the Lyon Urban Area. Travel times to fifteen service 
employment centres of Lyon and Villeurbanne (Figure 2) are used. These centres have 
been formally identified in Kryvobokov (2010). 

                                                 
5 Modélisation et Simulation de l’Accessibilité aux Réseaux et aux Territoires (Modelling and Simulation 
of Accessibility to Networks and Territories). 



Table 1. Definitions of apartment variables and descriptive statistics 
Variable Description Mean Minimum Maximum Std. dev. 

Price Transaction price, euro 127,243 20,000 500,000 72,374 
Year97 - Year08 Dummies for year of 

transaction 
0.02-0.14 0 1 0.13 - 0.35 

Building_Age Building age, years 36.01 0 200 47.41 
Area Apartment area, square 

metres 
68.44 20 196 26.98 

FloorGround Dummy for ground 
floor 

0.12 0 1 0.32 

Floor1 Dummy for storey 1 0.18 0 1 0.38 
Floor2_8 Dummy for storey 2 to 

8 
0.68 0 1 0.47 

Floor9+ Dummy for storey 9 
and more 

0.02 0 1 0.14 

Bath1 - Bath3 Dummies for number 
of bathrooms 

<0.01 - 0.93 0 1 0.04 - 0.26 

Park_Unknown Dummy for cases with 
no data about parking 
places 

0.33 0 1 0.47 

Park0 - Park3 Dummies for number 
of parking places 

<0.01 - 0.50 
 

0 1 0.06 - 0.50 

Cond_Good Dummy for good state 0.82 0 1 0.39 
Cond_Med Dummy for state when 

some maintenance is 
needed 

0.15 0 1 0.36 

Cond_Bad Dummy for state when 
renovation is needed 

0.03 0 1 0.18 

View_Unknown Dummy for cases with 
no data about view 

0.61 0 1 0.49 

View_Good Dummy for view 
increasing value 

0.37 0 1 0.48 

View_Bad Dummy for vies 
decreasing value 

0.02 0 1 0.14 

Cellar0 – 
Cellar2 

Dummies for number 
of cellars 

0.02 - 0.34 0 1 0.14 - 0.48 

Garden Dummy for garden 0.05 0 1 0.21 
Terrace Dummy for terrace 0.09 0 1 0.28 

 



Table 2. Definitions of location variables and descriptive statistics 
Variable Description Mean Minimum Maximum Std. dev. 

%LowIncome Percent of low-income 
households 

30.99 15.58 52.12 4.75 

%HighIncome Percent of high-
income households 

11.75 4.72 24.68 2.24 

TT_Bellecour Travel time to 
Bellecour-Sala 

9.19 0.00 20.32 3.30 

TT_Pradel Travel time to Louis 
Pradel 

9.23 2.04 18.98 3.72 

TT_Stalingrad Travel time to 
Stalingrad 

9.68 1.42 20.05 3.65 

TT_Bach Travel time to Victor 
Bach 

7.66 0.00 18.42 3.59 

TT_Moliere Travel time to Molière 8.34 0.00 16.89 3.52 
TT_Jussieu Travel time to Jussieu 8.32 0.00 18.22 3.42 
TT_Saxe Travel time to Saxe-

Bossuet 
7.92 0.00 17.31 3.61 

TT_Mutualite Travel time to 
Mutualité-Liberté 

7.98 0.00 17.26 3.35 

TT_Hernu Travel time to Charles 
Hernu 

9.23 0.00 19.08 4.26 

TT_LesBelges Travel time to Les 
Belges 

9.06 0.00 19.38 3.88 

TT_Vilette Travel time to Villette 
Gare 

8.61 0.00 18.77 4.19 

TT_GratteCiel Travel time to Gratte 
Ciel est 

9.94 0.00 22.17 5.11 

TT_Terreaux Travel time to 
Terreaux-Bat d’Argent 

8.98 0.00 18.19 3.42 

TT_PartDieu Travel time to Part-
Dieu 

8.54 0.00 19.03 3.95 

TT_Lyautey Travel time to 
Marechal Lyautey 

8.33 0.00 17.12 3.63 

 
 

5. Detection of neighbourhoods 
 
A numerous number of initial variables can be substituted for smaller number of their 
linear combinations. The technique appropriate for data reduction is PCA that came to 
real estate literature from sociological and geographical studies. For the distinction 
between PCA and factor analysis see Fabrigar et al. (1999).  
 
Bourassa et al. (2003) include in PCA both spatial and aspatial groups of variables, but 
exclude non-location principal components from their cluster analysis. In our study we 
apply PCA only to location attributes. Uncorrelated principal components are extracted 



with Varimax orthogonal rotation. The non-collinear components with eigenvalues higher 
than unity are applied in cluster analysis.    
 
PCA is applied at the three geographical levels: individual apartments, zones, and 
municipalities. For apartments, eighteen initial variables are analysed: travel times to the 
fifteen centres, %LowIncome, %HighIncome, and Building_Age. While building age 
refers to an apartment block, the data on other attributes were collected at the level of 
zones. Thus, dependency from the existing boundaries still exists. The extracted principal 
components are described in Table 36. Four principal components with eigenvalues 
higher than unity are extracted, which account for more than 80% of the variance. Added 
to the OLS regression instead of the location variables (see Section 6), components 1, 3 
and 4 demonstrate significance. These three components are used in clustering.  
 
At higher geographical levels, building age is excluded as an attribute of apartment block. 
Average building age in zones and municipalities is not calculated due to the lack of 
comprehensive data. At the level of zones, seventeen location variables are analysed: 
travel times to fifteen centres, %LowIncome, and %HighIncome. We extracted four 
principal components (Table 3), of which the first two account for more than 80% of the 
variance. Components 1, 3 and 4 demonstrating significance in OLS regression are 
exploited in formation of clusters.  
 
For municipalities, seven location variables are analysed by PCA: travel times to five 
municipalities, where the service employment centres are located (the Lyon 
arrondissements 1, 2, 3 and 6, and Villeurbanne), and two income groups. Three 
principal components are extracted (Table 3), which account for more than 80% of the 
variance. All three components are significant and used in clustering.  
 
In the clustering process, we use polygons and take into account the principal 
components of location variables. This allows forming continuous clusters covering the 
whole analysed area and characterised by geographical attributes. Thus, each ex-sample 
observation unambiguously belongs to one or another geographical cluster and shares its 
attributes. The clustering process is iterative, i.e. the clusters formed in the initial step are 
considered in the next clustering step as polygons with average weighted values of 
attributes (principal components’ scores) with areas of initial polygons used as weights. 

 

                                                 
6 The scores of principal components are interpolated to raster to see their spatial distribution; the maps are 
not presented in the paper. For similar maps, see Bonnafous and Kryvobokov (2011). 



Table 3. Description of principal components 
Principal 

components Apartments Zones Municipalities 

Principal 
component 

1 

New accommodation located 
farther from centres, but not 
obviously very far from the 
centres of Villeurbanne, 
positively correlated with 
high-income households and 
negatively correlated with 
low-income variable, both 
correlations are 21.5%. 

Located farther from centres 
(with one exception for 
Villeurbanne), weakly 
positively correlated with 
high-income households. 

Located farther from centres 
(with the exception for 
Villeurbanne), weakly 
negatively correlated with 
both income groups. 

Principal 
component 

2 

Rather older accommodation, 
though correlation with 
building age is only 17.5%, 
located farther from the 
centres of Villeurbanne and 
eastern Lyon, weakly 
positively correlated with 
high-income households and 
weakly negatively correlated 
with low-income variable. 

Located mainly in the western 
part of Lyon closer to 
arrondissement 2 than to other 
centres, insignificant 
correlation with income 
groups. 

Rich population (as opposed 
to poor households), for whom 
travel times to centres are in 
general not very important. 
They are located rather closer 
to arrondissement 6 and 
farther from the other centres 
of Lyon. 

Principal 
component 

3 

Rather older buildings, though 
correlation with building age 
is only 10%, located farther 
from the centres of Lyon, but 
not obviously very far from 
the centres of Villeurbanne, 
positively correlated with 
high-income households 
(20%) and negatively 
correlated with low-income 
variable (26%). 

Located farther from the 
majority of centres of Lyon, 
but insignificantly or 
negatively correlated with 
travel times to the centres of 
Villeurbanne, weakly 
positively correlated with 
high-income households. The 
minimum of its score is 
located in Guillotière7, which 
forms the core of its spatial 
distribution. 

Positively correlated with both 
income groups, though the 
coefficient is higher for high-
income households (26.2%), 
located closer to Villeurbanne 
and farther from 
arrondissements 1 and 2. 

Principal 
component 

4 

Rich population (as opposed to 
poor households) in newer 
accommodation (correlation 
25.6%), for whom travel times 
to centres are not very 
important. They are located 
rather farther from the main 
centres of Lyon.  

Rich population (as opposed 
to poor households), for whom 
travel times to centres are not 
important. They are located 
rather farther from the main 
centres of Lyon, mainly in the 
northern and western 
directions. 

 

 
 
                                                 
7 A problematic low-income area located remarkably close to the centre of Lyon, populated by immigrants 
and being the object of the specific attention of the police. 



Geographically, each apartment is represented as a point of centroid of an apartment 
block, where it is located. Around 2,527 apartments we construct 1,689 Thiessen 
polygons. There are two reasons of the smaller number of polygons. First, many 
apartments are located in the same apartment blocks and therefore share the same 
centroids. Second, some apartments might be sold more than once, but this information is 
not available. All the apartments within a particular block are characterised by the same 
location variables used to construct their principal components.  
 
The clustering process is reported in Table 4, which contains the number of initial 
territorial unit, clusters and iterations. From 10 municipalities, 6 clusters are formed after 
the first iteration, and no more clusters are found. Zones are united into 9 clusters after 9 
iterations, when the process is finished. We also use the intermediate version of 44 zone 
clusters formed after 3 iterations (see Figure 3) to have a number of neighbourhoods 
similar to that created with apartments’ Thiessen polygons.  
 

Table 4. Clustering 
Thiessen polygons 

Number Lyon 
West 

Lyon 
Peninsula 

Lyon  
East Villeurbanne Zones Municipa- 

lities 

Initial units 255 310 871 253 230 10 

25 27 71 12 Clusters of 
principal 

components 43 
44 9 6 

8 10 14 12 Iterations 
10 

3 9 1 

 
Because the number of Thiessen polygons exceeds limitation existing in our clustering 
script, these polygons are divided into four geographical parts. In terms of Clapp and 
Wang (2006), who distinguish between hard and soft boundaries, we use the former type: 
geographical barriers and administrative limits. Thus, Villeurbanne is analysed separately 
as a whole, while Lyon is divided into three parts by two rivers: Lyon West is composed 
by arrondissements 5 and 9 on the right bank of the Saône, Lyon East consists of 
arrondissements 6, 3, 7 and 8 on the left bank of the Rhône, and Lyon Peninsula is 
arrndissements 4, 1 and 2 between the rivers. Clustering takes place independently in 
each part. For example, in Lyon West after 8 iterations, 25 clusters are found. Afterwards 
all the formed 135 clusters are analysed together and after 10 iterations they form 66 
clusters. Small enclaves containing less than 5 apartments are merged with surrounding 
clusters decreasing the number of neighbourhoods to 43 (Figure 3).  
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Figure 3. Neighbourhoods: clusters of Thiessen polygons and zones 

 
 

6. Hedonic price model 
 

Theory provides no guide concerning the functional form of a hedonic regression model. 
We apply the log-log specification with dummies. The dependent variable is the log of 
Price. The log transformations of Area, Building_Age, %LowIncome and travel times are 
used. The variable %HighIncome is found insignificant probably due to small percentage 
of population belonging to the high-income group. The dummies Year97, FloorGround, 
Bath1, Park0, Cond_Good, View_Good and Cellar0 are default values.  
 
The OLS methodology is exploited in the beginning. However, when observations are 
spatially dependent, which is always the case for real estate prices, OLS estimates are 
inefficient and inconsistent (Dubin, 1998), while the estimate of the variance is biased 
(Anselin, 1988). The importance of these issues should be considered, even though in this 
study we do not focus on individual coefficients.  
 
The GWR technique (Brunsdon et al., 1996) has a powerful potential able to solve 
regression equations individually in each observation. In this paper, however, GWR is 
not applied due to a trivial reason that the number of variables in our model (with too 
many dummies for neighbourhoods) exceeds limitation in the available software.  
 



In Clapp’s local regression and Case’s model with submarkets in Case et al. (2004), 
nearest neighbour residuals are under special attention. Their conclusion is that the 
nearest neighbour residuals containing the information on the value of unobserved 
property and neighbourhood attributes should be included in the model if the purpose is 
to predict ex-sample. 
 
The spatial error methodology, where the error term is a function of the errors in nearby 
areas, explicitly accounts for this issue. We apply this technique, which, unlike the 
methodology of dependent variable’s spatial lag, provides a straightforward interpretation 
of coefficients as partial derivatives of a dependent variable.  
 
Eight model specifications are examined with the OLS and spatial error techniques. The 
baseline model does not contain any location attributes; construction period is not 
included either due to high correlation with location. The “trend surface analysis” 
variables of coordinates X and Y of apartment blocks’ centoids as well as %LowIncome 
and Building_Age are included in the next model; we cannot add X-squared and Y-
squared to this specification due to enormous multicollinearity. The other alternative 
without neighbourhoods contains four additional variables (hereafter referred to as “four 
location variables”): travel times to two service employment centres TT_Bellecour and 
TT_Pradel (with whom the model fit reaches its maximum), percentage of low-income 
households, and building age. In line with the argument of Ross et al. (2009), we are 
unable to include more than travel time variables. There are five models with different 
versions of neighbourhoods: municipalities, clusters of Thiessen polygons, two versions 
of clusters of zones, and clusters of municipalities (see Table 4). The two alternatives of 
zone clusters are included to examine their influence at both lower and upper 
geographical levels: the number of clusters of the former level (44) is comparable with 
the number of Thiessen polygons’ clusters (43), whereas the number of clusters of the 
latter (9) is similar to the number of municipalities (10). Thus, with approximately the 
same number of neighbourhoods created from points or zones in one case and from zones 
and municipalities in the other we can verify if it is worth starting clustering from lower 
geographical level. In all the cases, the default neighbourhood is that, where the Lyon 
city hall is located. The specifications with neighbourhoods include the variables from 
the baseline model and building age. The other location variables are excluded to 
decrease multicollinearity and allow spatial effects to be better captured by the spatial 
error technique8. For all the models, a Jarque-Bera test (OLS) and a Breusch-Pagan test 
(OLS and spatial error) indicate no rejection of the assumptions of normality and 
heteroskedasticity.  
 
Table 5 exhibits the estimates9 of the baseline model without location variables and of 
the three models with dummies for neighbourhoods: municipalities, 43 clusters of 
Thiessen polygons, and 44 clusters of zones. Neighbourhood variables are not presented 
because of their large number; instead, we report their number (except the default 

                                                 
8 Spatial error specifications with neighbourhoods, two travel times and percentage of low-income 
households demonstrate the tendency of prediction similar to the reported one.  
9 Table 5 contains the estimates significant at the 5% level in at least one model; t-values for OLS and 
asymptotic t-values for spatial error models are in parentheses.  



dummy) and the percentages significant at the 5% level or better. In case of zones, there 
are less neighbourhood dummies than clusters, because some clusters do not contain 
sales.  
 
When municipalities and building age are added to the OLS baseline model, three 
structural attributes (Bath3, Park_Unknown and Garden) become insignificant, the rest 
behave in the same manner as before. The clusters of Thiessen polygons and zones 
applied instead of municipalities do not substantially change other significant estimates 
except Cellar1, which becomes insignificant in the latter case.  
 
In comparison with the OLS, in the spatial error specification of the baseline model, the 
coefficients for dummies for years of sales are slightly increased, while the estimates for 
structural attributes are mainly decreased, some of them become insignificant. The 
specifications with neighbourhoods in this respect, in general, behave similarly, but the 
tendency of increasing the dummies for years and decreasing the structural variables is 
not always observed, especially for the clusters of Thiessen polygons and zones.    
 
Among the OLS models, the highest percentage of significant neighbourhood dummies, 
84, belongs for the clusters of zones. This percentage is similar to 86 from Case et al. 
(2004). With spatial error technique, the number of significant dummies for municipality 
decreases from seven to five in comparison with the OLS; for clusters of Thiessen 
polygons this number decreases in almost two times, but the most visible fall, in 3.5 
times, is observed for the significant clusters of zones. The maps of clusters created from 
Thiessen polygons and zones, presented in Figure 3, distinguish between 
neighbourhoods, positively and negatively influencing prices in the spatial error 
equations. The main difference between the two versions is that the clusters of Thiessen 
polygons located to the north from the reference cluster positively influence sale prices, 
while the clusters of zones to the north-west from their reference have negative influence. 
This can be explained by a large size of the reference cluster of Thiessen polygons, which 
includes not only the very central part of Lyon, but also some surrounding areas; in the 
case of zone clusters, on the contrary, the reference neighbourhood is relatively small, 
moreover, the prestigious areas to the north from the reference are united with some less 
desirable areas of neighbouring arrondissements.  

 



Table 5. Hedonic estimates 
OLS Spatial error 

Variable 

No 
location 
variables 

10 
municipa-

lities 

43 
clusters 

of 
Thiessen 
polygons

44 
clusters 

of 
zones 

No 
location 
variables

10 
municipa-

lities 

43 
clusters 

of 
Thiessen 
polygons

44 
clusters 

of 
zones 

Constant 7.056 
(101.04) 

7.382 
(110.19) 

7.312 
(112.82) 

7.411 
(105.54) 

7.158 
(107.14) 

7.353 
(97.67) 

7.277 
(109.23) 

7.347 
(89.02) 

Year00 0.109 
(2.64) 

0.146 
(4.01) 

0.145 
(3.97) 

0.153 
(4.08) 

0.141 
(3.91) 

0.151 
(4.43) 

0.152 
(4.44) 

0.150 
(4.36) 

Year01 0.166 
(4.14) 

0.207 
(5.84) 

0.204 
(5.69) 

0.222 
(6.07) 

0.205 
(5.82) 

0.214 
(6.39) 

0.218 
(6.51) 

0.215 
(6.36) 

Year02 0.219 
(5.46) 

0.280 
(7.90) 

0.276 
(7.72) 

0.285 
(7.79) 

0.268 
(7.63) 

0.276 
(8.27) 

0.278 
(8.32) 

0.283 
(8.38) 

Year03 0.364 
(9.24) 

0.422 
(12.12) 

0.418 
(11.87) 

0.435 
(12.10) 

0.410 
(11.86) 

0.428 
(13.02) 

0.426 
(12.94) 

0.427 
(12.90) 

Year04 0.529 
(13.28) 

0.606 
(17.16) 

0.597 
(16.77) 

0.600 
(16.48) 

0.597 
(17.04) 

0.609 
(18.30) 

0.610 
(18.30) 

0.612 
(18.21) 

Year05 0.661 
(16.49) 

0.741 
(20.88) 

0.736 
(20.57) 

0.734 
(20.11) 

0.723 
(20.60) 

0.747 
(22.37) 

0.753 
(22.49) 

0.747 
(22.21) 

Year06 0.814 
(20.13) 

0.869 
(24.29) 

0.867 
(24.00) 

0.876 
(23.76) 

0.858 
(24.20) 

0.875 
(25.96) 

0.873 
(25.88) 

0.877 
(25.83) 

Year07 0.896 
(21.90) 

0.958 
(26.48) 

0.953 
(26.15) 

0.949 
(25.55) 

0.946 
(26.45) 

0.965 
(28.39) 

0.965 
(28.37) 

0.958 
(27.95) 

Year08 0.865 
(19.74) 

0.944 
(24.31) 

0.935 
(23.94) 

0.948 
(23.78) 

0.920 
(24.03) 

0.941 
(25.85) 

0.948 
(26.02) 

0.943 
(25.77) 

Area 0.954 
(68.05) 

0.949 
(75.90) 

0.952 
(75.86) 

0.945 
(73.72) 

0.929 
(73.80) 

0.944 
(78.81) 

0.945 
(79.43) 

0.943 
(78.64) 

Floor1 0.089 
(4.28) 

0.069 
(3.75) 

0.073 
(3.93) 

0.066 
(3.54) 

0.068 
(3.76) 

0.065 
(3.79) 

0.065 
(3.80) 

0.066 
(3.87) 

Floor2_8 0.140 
(7.56) 

0.112 
(6.88) 

0.114 
(6.94) 

0.105 
(6.29) 

0.111 
(6.91) 

0.102 
(6.68) 

0.103 
(6.74) 

0.100 
(6.58) 

Floor9+ 0.107 
(2.76) 

0.107 
(3.14) 

0.117 
(3.40) 

0.100 
(2.87) 

0.095 
(2.78) 

0.108 
(3.33) 

0.120 
(3.70) 

0.107 
(3.31) 

Bath2 0.087 
(4.14) 

0.048 
(2.59) 

0.041 
(2.23) 

0.046 
(2.45) 

0.047 
(2.54) 

0.039 
(2.22) 

0.034 
(1.96) 

0.034 
(1.96) 

Bath3 0.225 
(2.02) 

0.084 
(0.86) 

0.025 
(0.24) 

0.082 
(0.83) 

0.085 
(0.88) 

0.093 
(1.02) 

0.020 
(0.21) 

0.083 
(0.92) 

Park_Unknown 0.092 
(5.15) 

0.006 
(0.38) 

-0.003 
(-0.19) 

0.022 
(1.25) 

-0.014 
(-0.81) 

-0.014 
(-0.87) 

-0.015 
(-0.93) 

-0.011 
(-0.66) 

Park1 0.194 
(11.06) 

0.103 
(6.05) 

0.102 
(5.97) 

0.111 
(6.37) 

0.182 
(11.21) 

0.100 
(6.15) 

0.099 
(6.15) 

0.102 
(6.34) 

Park2 0.257 
(9.98) 

0.136 
(5.66) 

0.136 
(5.61) 

0.161 
(6.56) 

0.241 
(10.42) 

0.141 
(6.19) 

0.140 
(6.19) 

0.145 
(6.42) 

Park3 -0.106 
(-0.18) 

-0.196 
(-2.48) 

-0.199 
(-2.51) 

-0.179 
(-2.22) 

-0.117 
(-1.49) 

-0.211 
(-2.84) 

-0.198 
(-2.68) 

-0.200 
(-2.71) 

 



Table 5 (continued) 
OLS Spatial error 

Variable 

No 
location 
variables 

10 
municipa-

lities 

43 
clusters 

of 
Thiessen 
polygons

44 
clusters 

of 
zones 

No 
location 
variables

10 
municipa-

lities 

43 
clusters 

of 
Thiessen 
polygons

44 
clusters 

of 
zones 

Cond_Med -0.151 
(-10.68) 

-0.107 
(-8.37) 

-0.112 
(-8.67) 

-0.108 
(-8.25) 

-0.140 
(-11.36) 

-0.099 
(-8.27) 

-0.102 
(-8.47) 

-0.097 
(-8.11) 

Cond_Bad -0.257 
(-9.00) 

-0.233 
(-9.21) 

-0.237 
(-9.37) 

-0.236 
(-9.18) 

-0.291 
(-11.72) 

-0.245 
(-10.32) 

-0.248 
(-10.52) 

-0.249 
(-10.56) 

View_Unknown -0.024 
(-2.32) 

-0.033 
(-3.53) 

-0.033 
(-3.56) 

-0.031 
(-3.30) 

-0.010 
(-1.10) 

-0.029 
(-3.34) 

-0.028 
(-3.25) 

-0.027 
(-3.14) 

View_Bad -0.103 
(-2.80) 

-0.107 
(-3.29) 

-0.099 
(-3.04) 

-0.096 
(-2.91) 

-0.099 
(-3.08) 

-0.099 
(-3.25) 

-0.092 
(-3.05) 

-0.094 
(-3.12) 

Cellar1 -0.075 
(-6.83) 

-0.034 
(-3.30) 

-0.027 
(-2.61) 

-0.017 
(-1.58) 

-0.064 
(-6.38) 

-0.020 
(-2.01) 

-0.019 
(-1.87) 

-0.012 
(-1.15) 

Garden 0.065 
(2.22) 

0.036 
(1.39) 

0.044 
(1.67) 

0.035 
(1.33) 

0.042 
(1.63) 

0.020 
(0.80) 

0.018 
(0.45) 

0.017 
(0.70) 

Terrace 0.072 
(3.54) 

0.051 
(2.80) 

0.049 
(2.68) 

0.044 
(2.36) 

0.102 
(5.71) 

0.060 
(3.50) 

0.057 
(3.33) 

0.057 
(3.37) 

Building_Age - -0.048 
(-14.33) 

-0.048 
(-13.97) 

-0.049 
(-14.19) 

- -0.052 
(-15.93) 

-0.053 
(-16.32) 

-0.053 
(-16.33) 

Number of 
neighbourhood 
dummies  

- 9 42 38 - 9 42 38 

Percentage of 
significant 
neighbourhood 
dummies  

- 78 55 84 - 56 29 24 

 
The extracted results of the eight specifications are presented in Table 6. The parameters 
for comparison of the descriptive power of models are their goodness-of-fit, the 
maximum of variance inflationary factor (VIF) for OLS, lambda for spatial error, and 
Moran’s I. We apply the known principle that a VIF in excess of 10 indicates 
multicollinearity10. Higher and more significant lambda indicates stronger spatial 
dependency. Moran’s I measuring global spatial autocorrelation in the residuals is 
calculated with the row-standardised distance weight matrix with 12 neighbours. For the 
ex-sample predictions, the following parameters are exploited: the mean absolute 
percentage error (MAPE), which is the mean of the absolute values of deviations of 
predicted prices from actual prices; the percentages of predictions that deviate within 
10% and 20% of actual prices; and Moran’s I for the ex-sample error terms. For the 
parameters in Table 6, the best result is highlighted in bold type, with the exception of the 
second column. Where results of two best models are very close, both are highlighted.  

                                                 
10 The attempt to use in the hedonic models the clusters of initial location variables instead of the clusters 
of principal components failed due to high multicollinearity between neighbourhoods with VIF 
dramatically exceeding the threshold of 10.  
 



Table 6. Extracted hedonic results 
Ex-sample prediction 

Model 

Adjusted R2 
(OLS) / 

Pseudo R2 
(spatial error) 

Maximum VIF 
(OLS) / 
Lambda 

(spatial error) 

Moran’s I MAPE

Within 
10% 

of sale 
price 

Within 
20% 

of sale 
price 

Moran’s I 

OLS models 
No location 
variables 

0.819 7.933 0.258** 0.1950 35.3 64.2 0.197** 

X and Y, no 
neighbourhoods 

0.834 7.966 0.254** 0.1856 36.7 67.4 0.224** 

Four location 
variables, no 
neighbourhoods 

0.859 7.999 0.152** 0.1686 42.4 69.9 0.089** 

10 
municipalities 

0.860 8.027 0.149** 0.1655 42.7 71.8 0.101** 

43 clusters of 
Thiessen 
polygons 

0.861 8.287 0.143** 0.1584 45.3 73.1 0.082** 

44 clusters of 
zones 

0.857 
 

8.332 0.156** 0.1635 43.8 71.0 0.080** 

9 clusters of 
zones 

0.843 8.010 0.228** 0.1756 39.4 68.5 0.151** 

6 clusters of 
municipalities 

0.851 8.007 0.185** 0.1726 42.4 70.3 0.157** 

Spatial error models 
No location 
variables 

0.860 0.833 
(31.807) 

0.072** 0.1876 34.3 65.7 0.193** 

X and Y, no 
neighbourhoods 

0.874 0.847 
(34.567) 

0.056** 0.1794 37.5 68.4 0.242** 

Four location 
variables, no 
neighbourhoods 

0.874 0.785 
(24.823) 

0.059** 0.1668 40.0 69.8 0.135** 

10 
municipalities 

0.875 0.765 
(22.548) 

0.058** 0.1642 40.7 72.0 0.124** 

43 clusters of 
Thiessen 
polygons 

0.878 0.798 
(26.414) 

0.052* 0.1648 41.1 71.2 0.154** 

44 clusters of 
zones 

0.877 0.837 
(32.538) 

0.046* 0.1711 38.9 67.4 0.197** 

9 clusters of 
zones 

0.875 0.867 
(39.223) 

0.057** 0.1829 35.6 63.6 0.278** 

6 clusters of 
municipalities 

0.874 0.815 
(28.815) 

0.058** 0.1721 38.4 69.1 0.187** 

Pseudo-significance for Moran’s I: *p<0.01; **p≤0.001 
 



According to the descriptive power, the best OLS model is that with the clusters of 
Thiessen polygons, while the second best is that with municipalities. By its performance 
and spatial autocorrelation of residuals, the OLS model with four location variables and 
without neighbourhoods is better than the models with zone and municipal clusters. The 
percentages of prediction of the OLS model with the clusters of Thiessen polygons are 
the highest. The lowest ex-sample Moran’s I is for 44 zone clusters, but it is almost the 
same as for the Thiessen polygons’ clusters.   
 
Spatial autocorrelation in the OLS residuals is significant, and the application of a spatial 
technique seems adequate. In the spatial error models, the threshold weight matrix is 
used, where the threshold is determined such that there is at least one neighbour for each 
observation11. After accounting for spatial effect, the descriptive power of the model with 
location variables is no better than that of any model with neighbourhoods. Though the 
model with the clusters of Thiessen polygons has the highest pseudo R2, it is practically 
equal to the performance of the model with 44 zone clusters. The letter model also 
provides the minimum of the spatial autocorrelation in the in-sample residuals; the former 
model is the second best by this parameter. These are the only two cases where Moran’s I 
is pseudo-insignificant at the 1% level.  
 
The ex-sample predictions for the spatial error models are calculated with an average in-
sample residual in each zone. The same zone level is used to calculate average residual 
by all the models irrespective of whether any neighbourhoods are included and of the 
geographical level of neighbourhoods. According to predictive power, the situation is 
different from the OLS. The superiority of the clusters of Thiessen polygons in MAPE 
and deviations within the 10% prediction interval is contested by the model with 
municipalities, especially within the 20% interval and by the ex-sample Moran’s I – 
according to these parameters municipalities provide the best prediction.  
 
We should admit that the prediction results of the spatial error models are in most cases 
worse than those of the OLS. It may reflect the inappropriateness of the selected zone 
level for calculation of average in-sample residuals. Note that even the spatial models 
with the clusters of zones do not benefit from the selection of their levels for residuals if 
to compare their prediction parameters with their OLS counterparts. At the same time, it 
would be incorrectly to apply for the ex-sample prediction our in-sample weighting 
scheme with its threshold. In the context of this difficulty of the ex-sample calculation we 
can mention Wilhelmsson (2004), who notes that spatial regression models are not fully 
transparent, and therefore it may be problematic to use their results in, for example, 
property tax assessment. 
 
Comparing the models with similar number of neighbourhoods, the following findings 
can be highlighted. The models with 43 clusters of Thiessen polygons and with 44 zone 
clusters can be quite similar, especially when the spatial error technique is applied. 
However, if the neighbourhoods are created from individual observations with Thiessen 
polygons, the predictive power of this model is stronger according to all the examined 
parameters. The comparison of the models with 10 municipalities and with 9 clusters of 
                                                 
11 The weighting scheme with a pre-specified number of nearest neighbours does not work for this dataset.  



zones differs from the previous finding. The OLS model with municipalities is superior 
by all the parameters of estimation and prediction. When the spatial errors of both models 
are accounted for, their estimation results are similar, but the predictive power of the 
model with municipalities is much higher.  
 

Conclusion 
 
This paper proposes a method for defining neighbourhoods applying Thiessen polygons 
and fuzzy equality clustering. The advantages of the method are that it starts from the 
lowest level of individual observations, takes into account adjacency, does not need the a 
priori determination of a number of clusters and can be completely formalised. On the 
other hand, there is no statistical control in the clustering process.  
 
Principal components extracted from location attributes are analysed in the clustering. 
For the purpose of the study, the influence of the proposed clusters of Thiessen polygons 
on apartment price is compared with that of other versions of neighbourhoods, which are 
the clusters of zones and municipalities as well as municipalities themselves. The 
dummies for neighbourhoods are included in a hedonic regression model.  
 
With the OLS technique, the clusters of Thiessen polygons provide the best model in 
both estimation and prediction aspects. When a model is controlled for spatial error 
effect, spatial autocorrelation of in-sample residuals is the lowest and pseudo-
insignificant at the 1% level at the lowest geographical level: more than forty 
neighbourhoods are better than ten or less. However, the superiority in the predictive 
power of the models with the highest geographical resolution is contested by simple 
municipal division. The difficulty with the ex-sample prediction applying the spatial error 
methodology complicates the generalisation of our results and implies caution in their 
interpretation. But if to analyse the spatial error predictions as they are, smaller is not 
always better. Similarly to Wilhelmsson (2004), we found a limitation in the predictive 
power when there are too many neighbourhoods, but our finding is different: large 
administrative units can be better than clusters created at lower geographical levels. The 
hypothesis that municipalities can be treated as submarkets might be checked in a future 
study. Thus, the proposed method of neighbourhood delineation could be applied in 
combination with market segmentation.  
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