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Abstract

This article presents a Hierarchical Trend Model for selling prices of houses, addressing
two main problems: the spatial and temporal dependence of selling prices. In this model
cluster-level trends, a general trend, and specific characteristics play a role. In this set-
up every cluster, a combination of neighbourhood and house type, has his own price
development.

This dynamic hedonic model is used for real estate valuation, and for determining
local price indices. Two applications are provided, one for the Breda region, and one for
the Amsterdam region. For these regions price indices based on weighted median selling
prices are compared with the quality adjusted price indices from the Hierarchical Trend
Model. It is shown for both housing market regions that the hedonic approach produces

price indices that are more accurate, detailed, and more up-to-date.

1 INTRODUCTION

This article concerns the modeling of selling prices of houses. A hedonic price model is

presented, developed for the determination of real estate taxes in Amsterdam. Besides the



size, and the location of the house, in a time of rapid price movements the selling date is an
important characteristic to explain selling prices. A Hierarchical Trend Model (HTM) is
presented, addressing two main problems: the spatial and temporal dependence of selling
prices. In this hedonic price model cluster-level trends, a general trend, and specific
characteristics play a role. Together with the influence of the specific characteristics these
trends are estimated within the HTM. The cluster-level trends are specified as deviations
from the general trend. The general, and cluster-level trends are modelled as stochastic
trends, so no a priori structure is assumed. The clusters, or market segments can be
defined by for example neighborhoods, and dwelling types. In this set-up it is possible
that every market segment has a different price development.

Sections 2 - 5 concern model specification. In section 2 the functional form of the
dependent variable is motivated. In section 3 the choice of the functional form of some
of the explanatory variables, like lot and house size, is discussed. Section 4 adds the
spatial model component. In section 5 the final HTM is provided, including the temporal
component.

This model can be used for real estate valuation. Given the characteristics of the house
the model is able to produce values for all time points in the time period considered. At
this moment this model is operational in Amsterdam for the determination of real estate
taxes.

Another application is provided by the determination of price indices. Changes in the
levels of selling prices can be caused by changes in the underlying characteristics of the
houses. For this reason selling price levels in one period cannot be directly compared with
selling price levels in another period, but the levels must be adjusted for differences in
house characteristics. It is shown that the estimated trends from the HTM provide the
correct measurement of house price movements, and levels over time.

In this article the HTM is estimated on two datasets over the period 1985-1999, both



from the Dutch Broker Organization (NVM). The first dataset contains selling prices for
the Breda region, the second database selling prices for the Amsterdam region'. Section
6 provides a brief description of both datasets.

Section 7 provides some model results for the Breda region. In section 8 price indices
are shown for both the Breda and Amsterdam region. The indices produced by the HTM
are compared with indices from an often-used method that simply consists of taking
averages, or medians for every cluster. It is shown that the hedonic approach produces
price indices that are more accurate, detailed, and more up-to-date. For both methods
standard deviations are compared for price indices for the region as a whole as well as
per neighborhood, and house type within the region, both on a monthly, quarterly, and a

yearly basis. Section 9 concludes with the key results.

2 DEPENDENT VARIABLE

In this section a motivation is provided for the specification of the dependent variable. The
dependent variable is the selling price, or a transformation of the selling price. Examples
of transformations are the square root, and the natural logarithm of the selling price.
The Box-Cox method is often used as a guideline to choose a specific transformation, see

for example Halvorsen and Pollawski (1979). Let Y; denote the selling price of sale 4 for

i=1,...,n. The Box-Cox transformation is given by
V)’ -1
v =L

For § = 1, the dependent variable is the selling price, for § = %, the dependent variable is
the square root of the selling price, and for § — 0, the dependent variable is the natural

logarithm of the selling price. In general 6 is unknown, and along with the coefficients of

I This is another database as is used for the determination of real estate taxes. The last dabase consists
of all selling prices of Amsterdam only. The NVM database consists of selling prices for the Amsterdam

region, including a few other cities. The NVM has a market share of approximately 60%.



the explanatory variables, it needs to be estimated.

We did not use the Box-Cox analysis to choose a transformation. We use the natural
logarithm of the selling price as dependent variable. The reason for this that we assume
that variables for neighborhoods and trends, work in a multiplicative way on the size
of the house, see section 3. Another reason for this is that our goal is to minimize the
relative standard deviation. This can also be done in the more general cases of a Box-Cox
transformation, but that is more complex to evaluate. An additional assumption of the
natural logarithm is that the error terms have a lognormal density, that can be checked
by evaluating the residuals.

Let y; denote the natural logarithm of Y;, so y; = InY;. It is assumed that all selling

prices Y; > 0. The model is given by
y=XpB+e, (1)

and € ~ N(0,02%1,).

Because of the logarithmic specification of the dependent variable, the standard de-
viation can be interpreted as a relative standard deviation. Let e denote the vector of
residuals, so e =y — X B, with ﬁ the Ordinary Least Squares (OLS) estimator of 5. Let

M; denote the model value, so M; = exp(XiB), then

Yi —Xﬁ:lnYi —InM; =In(1+

due to the fact that In(1 + ¢) ~ &, for small . If the residuals are not too big, they
can be interpreted as relative errors, so the standard deviation from the residuals can be
interpreted as a relative standard deviation.

In the standard linear model the residual sum of squares, and hence the standard
deviation is minimized. This means that in the logarithmic specification of the dependent
variable the relative errors (Y — M)/M are approximately minimized. If the dependent

variable is the selling price, the absolute errors (Y — M) are minimized. In the first case



an error of £10.000 on a selling price of £100.000 has a greater impact on the standard
deviation than an error of £10.000 on a selling price of £1.000.000. In the last case both
errors have the same impact on the standard deviation of the residuals.

In (1), E |y; — X;B|y, 02| = 0. The variance is given by var(y; — X8|y, 02) = 7;, with
Ti = Xivar(B)Xi’ + 02, and var(3) = 02(X'X)~!. The exponent of the model residuals

are of interest. The expectation, and variance are given by?

B |exp {4 - XiB} ln.0%| = exp(ri/2),

var (exp {yi - Xiﬁ} ly, 02) = expT;(expr; — 1),
Even in the case that fuar(B) = 0, the expectation is greater than 1, because in general o2
is not zero. For example, if o = 0.15, 0% = 0.0225, and exp {02/2} ~ 1.01. So, a standard
deviation of 0.15 leads to over valuation of about 1 percent. So, in order to obtain an
expected value of 1, for the ratio between actual and model value all model values can be

corrected by a factor exp (—7;/2).

3 MULTIPLICATIVE/ADDITIVE MODEL

3.1 Model specification

The internal floorspace is an important characteristic for explaining the selling price of
a dwelling. If the natural log of the selling price is used as dependent variable, and the

natural log of the internal floorspace (z1) as independent variable, then
y=p0Inz; + 76 +e¢,

with z the other explanatory variables. In this specification an increase of z1 by 1 percent,
will result in an increase of Y of approximately (3, percent. It is expected that 5; < 1, so

the value will be less than proportional with the internal floorspace.

’In general, if y ~ N(p,02) and Y = exp(y), then E[Y] = exp (p+02/2), and var (Y) =
exp(2u + o2) (exp o2 — 1)A So, in y the expectation and mode coincide, in Y the mode is smaller than

the expectation.



Another important characteristic is the lot size (z2). If the natural log of the lot size

is added as independent variable, then
Y = 2112952 exp(Z6 + ¢).

So, in this example (a power of) the internal floorspace is multiplied by (a power of) the
lot size. This is an undesirable feature of this model: we expect the mutual influence
of floorspace and lot size to be additive, rather than multiplicative. For that reason we
change the model specification. Let the k x 1 vector § denote the coefficients of the

additive variables X = { T e T } , and Z all other variables, then

y=aln(Xp)+Z6 +e. (2)

Note that the coeflicient (3, for x; is 1, because otherwise in case that in Z a constant is

included, the model is not identified. If we take the exponent for this model, we get
Y = (XB3)" exp(Z6 +¢), (3)

so this model is additive in X.

The variables Z influence as a factor both the lot size and internal floorspace, as is
shown from (3). This is a desirable feature for variables concerning time trends, and
the influence of the neighborhood. For variables like the age of the building, and the
maintenance this specification is undesirable, because these variables in practice only

influence the value of the floorspace, and in the model specification (2) also the lot size.

3.2 Estimation

The model (2) cannot be estimated by OLS, because it is nonlinear in 8. It is quite easy
to linearize (2) by using the approximation In(1 + ¢) ~ &, for small . Define z(j) =

Zle xi;0;, and x*(j) = Zle xi;0; for some %, with 37 = 1. So the index j denotes



observation j. We can write alnxz(j) as

k:
. . Bi —Bi
alnz(j) = o lnz™(G)+In|14+) ———u
D= afmer (14 3 A )

k:
, Bi — Bi
~ o |lnz*(j) + T
l ; z*(j)

“(j) — x1 k
o (nzr (i) — 1) — 215 P P
(l U == )*Z i)

=2

So, model (2) can be approximated by

x*(

, k
oy z*(J)xl) Tij
=a(lr() - —Z L) + N0, —L 1 (Z68); +¢;,
with 6; = af,, for i = 2,... , k. This model can be estimated as follows:
1. Choose some * such that |3; — 37| is small,

2. Calculate z*,

3. Estimate (4) by OLS, this provides estimates &, and /9\2», S0 @ = @-/a.

4. Substitute 3* with 3, and repeat 1 — 3, until |8, — 35| ~ 0.

In general this process will converge quickly. A more general approach is provided by

Gauss-Newton regression, see for example Davidson en MacKinnon (1993). Consider the

model y = z(8) + ¢, with z(5) some nonlinear function in 5. Let z(8) = dz(3)/08. The

first order Taylor expansion of this model around 3" is provided by

1

y z(67) +2(67)(8 - 87) + e,
y—z(8") = x(B)b+e
For observation j in (2) without Z6, () is provided by

In(X )

afBy (3 ijBy)

af, (3 wii8;) g



(5) can be estimated by OLS. The estimate of b must equal 0. The OLS must be done
recursively, and using gradients and Hessians can speed up convergence (see Chapter 6.8

in Davidson and MacKinnon (1993)). Stop criteria are based on t-statistics.

3.3 Linearization of the model value

Real estate agents and valuers are often interested in prices per square or cubic meters of
floorspace and lot size. It is possible to linearize (2) in X, so the model value M; can be

written as M; = Zle rij¢;j. From (2) it follows that

k a=l
M; = C(Z%‘ﬁi) (Z%@)
i=1 i=1

=1 (Zf:lzijﬁi)l_a :

k
= E xij¢ij>
=1

B,
N S @i

with ¢ = exp(z;0), with z; row j of Z.

4 INCORPORATION OF SPACE

One of the most important influences on housing prices is location. Two dwellings with
the same characteristics, but in different neighborhoods, could have very different market
values. This can be described by varying constants over neighborhoods, so dummy vari-
ables have to be introduced. Another example that shows the influence of location is, that
the influence of a characteristic varies over neighborhoods. For example, the influence of
a garage on the value of a dwelling is much bigger in the city center than in a suburb.
In the model specification this means that the coefficients 3 vary over location. A last
example that shows the influence of location on values is the simple fact that the value of

a house is dependent on the values of adjacent houses. In model specification this means



that a specific spatial covariance structure is assumed.

From spatial econometrics two notions are known, spatial heterogeneity and spatial
dependence, see for example Anselin (1988). Spatial heterogeneity can be described as
follows: functional forms and parameters vary with location and are not homogeneous
throughout the data set. And spatial dependence: the variation is a function of distance.

Spatial models for housing prices can be specified on an individual level (observation)
and on a cluster level, for example neighborhood, or city level. Spatial models on an
individual level are complex to evaluate. Examples of such spatial models are provided by
for example Can (1992), and Dubin (1992,1998). An example of a spatio-temporal model
is given in Pace et all (1998). Those models are not considered here.

Another choice is to specify the spatial component on a cluster level: spatial hetero-
geneity and spatial dependence on a cluster level. A drawback of this approach is that
there might be undesirable discontinuities on borders, and it requires knowledge of the
spatial structure, which might be different from available administrative clusters.

In the next subsection some clusterlevel models with spatial heterogeneity are de-
scribed. In the second subsection a model containing spatial dependence is provided. In
both subsections a fixed effects model, a random effects model, and a hierarchical model

are provided.

4.1 Spatial heterogeneity
4.1.1 Varying constant

A simple cluster level model for housing prices is a fixed effects model

Yij = o + 250 + €45, (6)

with j =1,...,B,i=1,...,n;, and g;; ~ N(0,0%)3. The index j denotes the clusters,

and ¢ the individual observations, n; denotes the number of observations in cluster j, y;;

3Except where otherwise specified, the €4;’s are uncorrelated.



the natural logarithm of the selling price of the ith observation in cluster j, and x;; the row
vector of explanatory variables. This model is sometimes called the least squares dummy
variable model (LSDV) (see for example Greene, 1993). In this model the constants o
vary over the clusters, say neighborhoods. It is assumed that the «;’s are unknown fixed

quantities. It can be shown that the least square estimator of a; can be given by

with 7 ;, and T ; given by Y77 yy5/n;, and Y77, 2 /n; respectively. 3 is the least squares
estimator of 3 given by ()~( 'X )_1)2 "y, with z;;, and y;; deviations from the cluster means,
defined by 7;; = x;; — T j, and y;; = yij — Y ;. The variance of the estimator Q; is given

by
var(a; — o) =T jvar(B — B)f'] + 02 /n;.

So, apart from 3 the estimator a; only depends on the observations in cluster j. If n; is
small, then &; is very sensitive to outliers. This can also be deduced from var(a; — «;),
which in general is dominated by ¢%/n;, and for small n; this variance is relatively big.
For n; = 1, the variance var(a; — o) equals the variance for an individual observation,
a2

A drawback of this specification is that nothing can be said about clusters that are
not included in the sample, for example clusters without selling prices. If «; is specified

as a random effects this problem is overcome.

The random effects model is given by

vij = o5t+a0+ ey,

aj ~ N(p,70%).

In this model «; is a random effect, drawn from a normal distribution. It can be shown

10



that in case of n; = n, and conditional on 3, the estimator of « is given by

& = (-wT)@;-T8) +w" T -T0),

w = nrt+1,

with 7, and T overall means. So, the estimator @; is a weighted average of the cluster mean
and the overall mean. The weight w™! is small for large n, so for large n the estimator Q;
is approximately ¥ ;. On the other hand for small n the estimator @ is approximately 7.
So @ is a shrinkage estimator. For 7 — oo the estimator of «v coincides with the estimator
in the fixed effects model.

The random effects model is a special case of a hierarchical model. A hierarchical

model is given by

vij = oa5+a0+ ey,
aj = zjb+n,,

n ~ N(0,7m0?).

The row vector z; is a vector of explanatory variables on cluster level. The second equation
provides an explanation for the differences in ;. For example, differences in a; are
explained by cluster level variables as distance to city center, crime rate, etc. If z; is 1,
the hierarchical model coincides with the random effects model.

Given (3, and 6, and nj; = n, the estimator @; is given by

& = (I-w )T, -T38-206)+w (77830,

w = nr+1.

So the estimator @; is also a shrinkage estimator. The estimation of 3, and § is not

treated here. For a thorough treatment of hierarchical, or multilevel models we refer to

Bryk (1992), Goldstein (1995), Longford (1993), and O’Hagan (1994).
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4.1.2 Varying coefficients explanatory variables

A fixed effects model for varying coefficients per cluster is provided by
Yij = xijB; + €4

The estimates for 3, are the same as the OLS estimates from the separate models y; =
z;f; + €;. The only difference is the estimation of the variance o2. In the model it is
assumed that the variance is constant over the clusters. A disadvantage of the fixed effects
approach is that 3; is poorly estimated if only a few observations are available in cluster
j. The estimate does not exists or will have large variances if the number of observations
is small relative to k, the number of explanatory variables.

This problem is overcome if it is assumed that 3; are random effects. The random

effects model is provided by

vij = xiiB; + ey,

B = o+ny,

and n ~ N(0,70%1p). Like in the case of varying constants also in the case of varying
coefficients for all explanatory variables, the estimates of 3; are shrinkage estimator. The
estimate of 3; can be seen as a weighted average of the overall estimate of 6 and the fixed
effects cluster estimate of 3;.

The hierarchical model is an extension of the random effect model. In the second
equation the constant 1 for 6 is replaced by a vector z; containing cluster level variables,

S0
Yij = i3, + &,
This kind of models are described by Can (1992), and Orford (1999)

12



4.2 Spatial dependence

The modelling of spatial dependence concerns merely the specification of the error term.
In this subsection an example of spatial dependence is provided at a cluster level.

Specify a matrix W with elements w;; as

1 cluster ¢ and j are adjacent
wij =

0 otherwise

The spatial autocorrelation matrix 2 can be modelled as
Q= (IB — pW)/(IB — pW).

This variance matrix can be used in a random effect model or hierarchical model. For

p = 0, no spatial dependence is apparent. The hierarchical model is given by

Yij = o5 +a0+ e,
o = 26+,

n ~ N(0,0%19).

5 INCORPORATION OF TIME

5.1 Hierarchical trends

Let the vector y; represent the logarithms of the selling prices of houses at time t. We
denote the length of y; by pt, and the k-th observation in y; by yr: (k=1,... ,p:). First,

we assume that all prices follow a common trend, which we can write as

Yr = iy, + €, (7)

where i is a ps-vector of ones, and ¢; ~ N(0,0%1), with I a p; x p; identity matrix. Note
that we have suppressed the time dependency of i and I in the notation. p, is a scalar

stochastic trend process.
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A simple example of a stochastic process is the random walk

Mot = fhg M5 n, ~ N(0, 0727) (8)

with a given p;. The disturbances € and n are assumed to be independent. We can also
view as a generalization of the model y; ~ N(p, 02) in which the global level u is allowed
to change over time. The model is called the random walk plus noise model, or the local
level model.

Note that in case explanatory variables are added, for 02 — oo, equations (7) and (8)
provide to the LSDV model.

We can give a random walk some direction by adding a drift parameter, which changes (8)
into p; 1 = B+ py + ;. Notice that if we let 0727 — 0, this reduces to a straight line with
slope 6. The random walk with drift can be further generalized by allowing § to vary over

time:

M1 = Byt +mg, ntNN(O>‘7727) 9)

Bir1 = B+ Ct"’N(Ong) (10)

with known 4,3, and independent 7 and . Equation (7) with these specifications for

the trend is called the local trend model. The trend p becomes smoother when we decrease

2.

o

in the limiting case of 0727 =0, p, is said to follow an integrated random walk, since
its first difference follows a random walk.

Suppose we have a method to categorize houses into L different types. We can include
a dummy matrix D; for house types as regressors in the model. Each row in the p; x L

matrix D; has a one in the [-th column and zeros elsewhere, if the house is of type

l=1,...,L. Writing X for the regression parameter vector for house types,
Yr = ipy + D) + €. (11)

In this model, the relative price differences between house types stays constant through

time. If we expect the prices to grow at different rates, we could allow A\ to vary over

14



time. The elements of the vector A\; can be modeled as trends in a similar fashion as the
common trend p,. The specification for the house type trends are typically less elaborate
than for the common trend; we will model them as simple independent random walks,
with a common variance level.

We can see immediately that if both A and p are constant, an unrestricted specification
like (11) leads to the dummy trap. In the general time-varying case, there is also an
identification problem if we try to extract both a general trend and a trend for house
types from the data. We can solve this by imposing the restriction p; = 0. With this
restriction, the level of y, indicates the general price increase relative to the first time
period. A trend for a specific house type is obtained as the sum of p, and the element of
¢ of corresponding to the house type.*

Of course, there is no need to restrict this approach to house types; any qualitative
independent variable can be treated in this way. We will refer to these as clusters. An
obvious example is a variable which indicates the neighborhood in which the house is
located. Note that if we model two classifications simultaneously (e.g., house types and
neighborhoods), additional restrictions are required.

We model the vector of log house prices with an extended version of (11), the Hierar-

chical Trend Model (HTM):
Yt = 1,ut +Dt>\t+Dt9t+Dt¢+Xtﬂ+et, €¢ NN(O,O'QI) (12)
We specify the general trend as an integrated AR(1) process with drift:

Hep1 = Vet iy (13)

Vig1 = K+ wve+ 1, 1, ~ N(0, q102). (14)

The vector A\; contains trend levels for house types at time ¢, while the vector 8; contains

4An alternative solution is to drop the common trend from the model. Without a common trend,
the correlations between the house type trends will have to be specified through the disturbance variance

matrix.
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trend levels for neighborhoods. The matrices D and D contain ones and zeros such that
they select the appropriate house type and neighborhood for the observation. For now,

we assume random walks for these trends:

Ai+1 = A+ 6, ¢ ~ N(0, QQUQI) (15)

Oit1 = 04wy, wi ~ N(0, %02[)7 (16)

where the identity matrices I have the appropriate dimensions.

Each neighborhood is divided in a number of subneighborhoods, for which we assume
separate levels. We collect all levels in a vector ¢, and use a selection matrix D to assign
the appropriate subneighborhood level to the observations. We can treat the levels as
fixed or random effects. An example model for random effects would be ¢ ~ N(0, gz01).

Finally, we add a number of explanatory variables X; with fixed parameters. We
will keep the basic form of the model linear, so a specification like (Inz;3)® will be
approximated by an iterative procedure as described in section 3. Note that 3 is kept
constant over time and over clusters. So,an obvious generalization would be to vary 3
over time and clusters, for example 3, = 3; + o;, with o, ~ N(0, q50°1).

In the method of time series modeling we described, observations are assumed to be
aggregates of unobserved parts with some interpretation, such as trend, and cycle. Each
part can be modeled further with as much detail as desired. These models are known in the
literature as Structural time series, or Unobserved components models. For a thorough
treatment we refer to Harvey (1989) and West and Harrison (1997), who discuss these
models as examples of State space or Dynamic linear models. In the State space form,
the unobserved components can be estimated with the Kalman Filter algorithm.

To put the model into State space form, we stack the variables y,, v¢, k, and the vectors

At, 0;, ¢, 8 in the state vector ;. The measurement equation is simply
ye=2iox+e=[i 0 0 D D D X, late, e ~ N(0,0°1). (17)

16



In the transition equation a;4+1 = Traq +&,, the transition matrix 7; is a time independent

block diagonal matrix, with

0 w

on the upper block, and I on the lower block. The zero-mean Normal transition distur-

bance &, has a diagonal variance matrix, with

2
0[0 q1 0 qz...q2 (g3...q3 (G4...44 00}

on the diagonal.

5.2 Estimation issues

We already mentioned an identification problem in specifying trends on different levels.
In the general model (12), we will also set the initial general trend level p, at zero. For
the slope component v; we have specified a stationary AR process. The initial value vq
follows from the unconditional AR mean o2q; /(1 — @?).

For the neighborhood trends, we will model the initial levels 8y explicitly, as
G| ~ N(Vr,0%0), (18)

where V' contains explanatory variables for neighborhood value levels. Examples are
crime rate, and distance from the city center. The variance matrix ¥ is specified as
a spatial autocorrelation matrix, as described in section 4. With a scaling factor, we
can use the same matrix to model correlations in the neighborhood trend disturbances;
in equation (16), w; ~ N(0,q30%W¥). These more elaborate specifications are especially
valuable if in some neighborhoods few observations are available. With this model we can
also value houses in neighborhoods without any selling price data.

We already mentioned that the subneighborhood levels ¢, can be modeled as fixed or
random. If we model them as fixed, we have an identification problem in each neighbor-

hood, comparable to specifying a full set of dummies besides a general level. This can be
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solved by omitting a subneighborhood in every neighborhood (for example, the first one).
The identification problem does not arise when the levels are modeled as random effects.

A final identification issue results from the fact that we have two complete classification
for the houses: neighborhoods and house types. This can be solved by set the initial level
of some house type at zero. The general trend p, is interpreted as general with regard to
neighborhoods for houses of this type. The vector iy, + D:A; provides the trends for all
house types, general with regard to neighborhoods.

We already mentioned that models in state space format can be estimated by the
Kalman filter. The Kalman filter assumes the first and second moment of the initial state
to be known. In general this is not true, (a part of) the initial state is diffuse. This
leads to an initialization problem which can be solved by the diffuse Kalman filter. The
recursions for the diffuse Kalman filter are provided in for example De Jong (1987), and
Koopman (1992,1997).

In Francke and De Vos (2000), it is shown how a hierarchical trend model with explana-
tory variables can be computed efficiently. First, we calculate the means per neighbor-
hood @1, ... ,yr, and the deviations from these means g1,...,yr. The length of vector
7 is the number of different neighborhoods for which we have observations at time t,
while g, = yp — thjt has the same dimension as y;. Likewise, we calculate means and
deviations from means for the explanatory variables. The coefficients of the explana-
tory variables are time- and neighborhood invariant, and can be computed by applying
OLS on the stacked deviation from mean vectors and matrices § = | T/ | and
X = X, ... Xk . Subsequently, the Kalman Filter is run with the mean data
s, X¢, and with the OLS estimates as initial mean and variance of the explanatory vari-
ables in the state. The likelihood is obtained as the product of the OLS likelihood and

the Kalman Filter likelihood.
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6 APPLICATIONS

6.1 Data description

The HTM-model as described in the previous section, is applied on two different datasets.
The first dataset contains selling prices for houses in the Amsterdam region, an urban
district with a relatively high proportion of apartments. The second database contains
selling prices of the Breda region, a rural district with one middle-sized city Breda with
about 160,000 inhabitants. The Breda region has a relatively high proportion of single-
family houses.

The two databases were established by the National Association of Property Brokers
(NVM). They have several merits from the point of view of this study. First, the size of the
database is large because the number of transactions registered by the NVM is on average
more than 60% of all transactions registered by the Land Registry (Kadaster). Sample
sizes of these magnitudes undoubtedly provide an adequate foundation for measuring house
price changes at a regional level. Secondly, the data concerning house characteristics are
more extensive than anything available in this area and this again helps to improve the
reliability of the statistical analysis. The available information about house characteristics
is summarized below:

1. Purchased price: date of selling, asking price, condition on sales

2. Location: address (street, number, postal code)

3. Housing characteristics:

(a) House type: detached, semi-detached, terraced, apartment (with sub-

classification)

(b) Tenure: freehold, land leasehold condition

(c) Garage: type of garage

(d) Heating type

(e) House size: area in m3
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(f) Plot size: total size in m2

(g) Garden: length and position of garden

(h) Space: number of rooms, kitchen, bathroom, type of living room

(i) Age: year of construction

(j) Physical condition: interior maintenance, exterior maintenance

(k) Marketing period

(1) Listed building

As indicated above, the data refer to transactions at the selling agreement as opposed
to the notarial act stage. This means that the price information is more up-to-date as
an indicator of price movements because of the time lags that occur between the price
negotiation stage and the ultimate completion of the transaction at the notarial act - a
lag that may extend over several months.

In the next two subsections both databases will be described.

6.2 Amsterdam region

A special database was designed to accommodate the various measurement problems as-
sociated with house prices. The database covers house 44,780 purchase transactions of
existing dwellings in the Amsterdam region from January 1985 until July 1999. This
market area is built up of four municipalities: Amsterdam, Amstelveen, Diemen and
Ouder-Amstel.

Transactions without proper postal code were excluded from the database. For the
segmentation in Amstelveen the year of construction was one of the crucial criteria. These
restrictions concerning house type, postal code and year of construction resulted in 42616
usable transactions from the original 44780. To be able to correct for differences in quality
of the houses it is necessary to take into account housing characteristics like house size,

lot size, year of construction, etc. This leads to extra demands on the data resulting in
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Type Number

Terraced 5613

Semi-detached 2562

Detached 595
Apartment 22678
Total 31448

Table 1: Number of relevant transactions per house type, Amsterdam region

31448 usable transactions. HEspecially in the earlier years less than half of the database
could be used.

The sales volume per year doubled during the period 1985-1999Q2. The fraction of
sales in the municipality of Amsterdam alone is more than 75% of all transactions, most
of them being apartments. The NVM database registers ten house types which are as-
sembled into four categories, namely: detached, semi-detached, terraced, and apartment.
The distribution of transactions to house type can be seen in Table 1. Clearly the frac-
tion of apartments is dominant and the influence of detached houses on the total price
development is small.

The selling prices are a priori divided in different segments, depending on neighbor-
hood, and house type. The Amsterdam data were ordered according to the existing
division in neighborhoods (Onderzoek en Statistiek, 1996). These neighborhoods can be
recognized by their postal codes so that the NVM database can be ordered accordingly.
From these about 350 neighborhoods we constructed 10 different sub-regional districts
which generated relatively homogeneous groupings of neighborhoods with respect to house
price development. As a classification of house types we use the one given in table 1. This
resulted in a 40-segments classification produced from four property types and ten sub-

regional districts. We refer to Francke and Vos (2000) for a more extensive treatment of
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the segmentation.

On the basis of these transactions a model was constructed, as explained in the previous
section, in which for each transaction a price was estimated which was compared with the
actual purchase price. When the actual price differed more than 80% (about 4 times the
standard deviation of the model) from the value calculated with the model, transactions
were excluded (229 transactions (0,7%)) because they were considered unreliable. This
resulted in a final database with 31219 transactions over the period 1985-1999Q2, a loss

of 30,3% (13561 transactions) compared to the original database.

6.3 Breda region

The Breda database contains 25,644 transactions covering the period January 1985 until
October 1999. The number of NVM transactions in the Breda region is relatively high,
about 65% of the total number of transactions. The Breda region contains selling prices
of different municipalities: Baarle-Nassau, Breda, Chaam, Dongen, Dussen, Geertruiden-
berg, Gilze en Rijen, ’s Gravenmoer, Made en Drimmelen, Nieuw-Ginniken, OQosterhout,
Prinsenbeek, Raamsdonk, Teteringen en Waspik.

To be able to correct for differences in quality of the houses it is necessary to take
into account housing characteristics like house size, lot size, year of construction, postal
code, etc. This leads to extra demands on the data resulting in 21,175 usable transactions.
Especially in the earlier years less than half of the database could be used.

The sales volume per year doubled during the period 1985-1999Q2. The fraction
of sales in the municipality of Breda alone is more than 45% of all transactions. The
NVM database registers ten house types which are assembled into four categories, namely:
detached, semi-detached, terraced, and apartment. The distribution of transactions to
house type can be seen in Table 2. Clearly the fraction of single-family homes is dominant.

The selling prices are a priori divided in different segments, depending on neighbor-
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Type Number

Terraced 7275

Semi-detached 8591

Detached 3460
Apartment 1849
Total 21175

Table 2: Number of relevant transactions per house type, Breda region

hood, and house type. We distinguished 4 different sub-regional districts which generated
relatively homogeneous groupings of neighborhoods with respect to house price develop-
ment. As a classification of house types we use the one given in table 2. This resulted
in a 16-segments classification produced from four property types and four sub-regional
districts.

On the basis of these transactions a model was constructed, as explained in the previous
section, in which for each transaction a price was estimated which was compared with the
actual purchase price. When the actual price differed more than 60% (about 4 times the
standard deviation of the model) from the value calculated with the model, transactions
were excluded (50 transactions) because they were considered unreliable. This resulted
in a final database with 21125 transactions over the period 1985-1999 October, a loss of

17,6% (4519 transactions) compared to the original database.

7 MODEL RESULTS

The model of selling prices in the Breda region is specified as described in equation (12).
One general trend (p,) is specified as a random walk with drift, 4 district trends (6;), and
finally 4 house type trends (\;), both as random walks. This results in 16 different trends.

The districts are divided in 73 subneighborhoods (¢) (postal area), for which we assume
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separate levels, modelled as random effects.
The model contains 50 coefficients of explanatory variables, and 5 variances to be
estimated. The definitions of the variables are provided in table 10 and 11 in the appendix.

The additive variables, as explained in section 2, are specified as

51 In(HouseSize800+ [, HouseSizeRest+ (5 PlotSize500+3,PlotSizeRest

+05GarageDetached+ 34 Garage Annex+ (3, GarageBuiltIn).

The estimation results are shown in the tables 3 and 4. In the appendix more results
are shown: table 14 contains the subneighborhood levels (between brackets the number of
observations per neighborhood), table 13 contains the coefficients for the different housing
types, and table 12 provides the coefficients for the interior and exterior maintenance.

All coefficients have the good sign. An increase of the House size by 10% leads to an
increase of the value by approximately 0.673 x 10% ~ 7%. The coefficient for a detached
garage is somewhat lower than the other garage coefficients. Maybe this is due to the
fact that the detached garages are more in the rural areas then in the city areas. A listed
building is about 15% more expensive than a “normal” house. The linear drift has a
coefficient of 0.0066, indicating an average yearly price rice of 12 x 0.0066 ~ 8% over the
whole period. The coefficients for interior and exterior maintenance show differences of
respectively 0.26 (30%) and 0.23 (26%) between perfect and bad maintenance.

The standard deviations are provided in table 4. The standard deviation of the mea-
surement equation ¢ is 0.1262, which can be interpreted as a standard deviation of about
13%, due to the log specification. So, 66 percent of the residuals is within one time the
standard deviation. The standard deviations for the random walks (), the general trend,
the district trends (), and the house type trends ()\), are small compared with the stan-
dard deviation of the measurement equation. The general price deviation per year, apart
from the drift, has a standard deviation of V12 x 0.0074 ~ 2,6%.The standard devia-

tion of the random effects for the subneighborhoods is about 10%. This means that a

24



Variable Coefficient | Standard Deviation | T-value
HouseSize800 0.673 0.0057 | 117.58
HouseSizeRest 0.883 0.0423 20.89
PlotSize500 0.901 0.0219 41.11
PlotSizeRest 0.085 0.0033 25.68
GarageDetached 45.82 2.3922 19.15
GarageAnnex 70.07 3.1811 22.03
GarageBuiltIn 55.35 4.3825 12.63
NRooms 0.0134 0.00104 12.84
Agel900 -0.1745 0.0089 -19.51
Agel920 -0.2280 0.0064 | -35.42
Agel945 -0.1817 0.0046 -39.90
Age -0.0052 0.00012 -41.81
Listed 0.1385 0.0197 7.02
Term -0.0020 0.0003 -7.50
SalesConditions -0.0019 0.0132 -0.14
LivingRoom1 0.0342 0.0027 12.77
LivingRoom?2 0.0214 0.0073 2.94
LivingRoom3 0.0251 0.0052 4.84
LivingRoom4 0.0067 0.0026 2.59
LivingRoom5 0.0075 0.0051 1.49
Time in months (k) 0.0066 0.0006 10.73

Table 3: Estimation results Breda region
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estimate

o 0.1262

o /a1 (1) | 0.0074

o/ (0) | 0.0060

oy (\) | 0.0024

o3 (¢) | 0.0983

Table 4: Estimation results variances Breda region

estimate

o 0.1824

oy/q (p) | 0.0116

o/ (0) | 0.0110

o3 (\) | 0.0630

o./qs (¢) | 0.1312

Table 5: Estimation results variances Amsterdam region

subneighborhood level is in 66 percent within -10% and +10% from the district level.

Figure 1 gives the general trend and figure 2 an example of the trend for a specific
district and house type as a deviation from the general trend. The y axis is in logarithms,
so an increase of .1 means that the increase in selling prices is approximately 10%. The
dashed lines indicate the 95% confidence intervals and the points the average standardized
selling prices, corrected for individual characteristics and the general trend, see equation
(12)

In table 7 the estimates of the variance for the Amsterdam region are shown. The
standard deviation for the measurement equation o is 18%, about 6% more than in the

Breda region.
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Figure 2: A specific cluster trend for the Breda region.
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8 PRICE INDICES

In this section we compare price indices obtained by the HTM (the fixed-sample hedonic
indices) with price indices based on a weighted average of median selling prices (simple-
weighted indices). In the first subsection we describe these methods, in the next subsection
we compare the results of both methods for the Amsterdam and Breda region. The last

subsection deals with the reliability of the price indices.

8.1 The simple-weighted and the fixed-sample hedonic index

In this method for every market segment the median selling price is calculated in period ¢
and t + 1. Next a weighted average of the segment medians is calculated with as weights
the relative number of sales in the segment, for both periods. The relative difference
between the two weighted averages provides the price index. The weights are not fixed
but are presented by the relative number of sales in each separate period (rolling basis).

In formula, with ¢ = 1,... , B, the market segments and ¢ the period,

M; ¢ the median selling price in market segment ¢ and period ¢,
M;  the weighted median selling price in period t,
n;;  the number of sales in market segment 7 and period ¢,

g the number of sales in period ¢.
Then

ng nit+---+npy,

M, = (migxMii+---+npyx Mpy)/n.

So the relative price movement equals (Myy1/M; — 1) x 100%.

In the fixed-sample hedonic index the market segment price movements are constructed
from the HTM model, as described in section 5. Fixed weights are used to obtain a general
price index from the segment price movements. The fixed weights in time are taken as

the relative number of selling prices per market segment over a long reference period
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(1985 - 1999Q2). The model simultaneously provides trends for different districts and
house types on a monthly basis. From these trends it is quite easy to construct price
indices on a monthly, quarterly, or yearly basis. In the model corrections are also made
for differences in structural and locational characteristics in order to be able to compare
the selling prices.

The differences between both methods are quite obvious. The fixed-sample hedonic
index corrects for differences in characteristics of the houses, and the simple-weighted
does not correct for any difference. The fixed-sample hedonic index uses fixed weights per
period, the simple-weighted index has time varying weights. The fixed-sample hedonic
index takes into account the selling date (on a monthly basis), the simple-weighted index
has an implicit assumption of equally spaced selling dates. The simple-weighted index
compares the "middle” of one period with the "middle” of the next period. So the simple-
weighted index has a time lack of half a period. The fixed-sample hedonic method is

capable of producing up-to-date indices, having a lag of at most half a month.

8.2 Price indices for the Amsterdam and Breda region

In this subsection price indices are shown for the Amsterdam and Breda region for the
simple weighted and the fixed-weighted hedonic method.

The fixed-weighted hedonic index shows that for the Amsterdam region the price devel-
opment varies over house type and district, and for the Breda region the price development
varies merely over house type.

Figure 3 shows the price changes for the Amsterdam region over the period 1985 -
1999Q)2. It is notable that differences between the methods are substantial, for instance
up to 16 percent points in 1989 despite the fact that there were more than 1000 transactions
per year. So, it seems to be very important to correct for differences in characteristics of

the sold houses.
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Figure 3: Price change for Amsterdam region.

For the Breda region similar results are shown in table 6.

For small market segments the differences are even more apparent. Table 7 shows for
the price changes for apartments in a district in the Breda region for both methods. It
seems to be that the simple-weighted index method is not a reliable method for small

market segments.

8.3 Reliability

In the last subsection it is shown that for small market segments the simple-weighted
method does not produce reliable indices. The reliability depends merely on the number
of observations and the heterogeneity of the sold houses. The number of observations is
dependent of the number of clusters, and the time period. The more cluster are distin-
guished, and the shorter the time period considered, the less observations are available. In

this subsection standard deviations are provided for the price changes in the Breda region.
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Simple-weighted fixed-sample hedonic

Change | Cumulative | Change | Cumulative
1985
1986 3.9 3.9 5.4 5.4
1987 7.3 11.4 6.1 11.9
1988 3.3 15.1 5.1 17.6
1989 7.2 234 6.3 25.0
1990 0.6 24.2 3.2 29.0
1991 4.9 30.3 4.9 35.3
1992 9.3 42.4 94 48.1
1993 10.8 57.8 12.7 67.0
1994 7.9 70.2 10.8 85.0
1995 9.0 85.6 7.2 98.3
1996 9.4 102.9 9.7 117.6
1997 7.3 117.8 8.5 136.1
1998 7.8 134.7 8.5 156.3
1999 Oct. 13.4 166.0 13.4 190.7

Table 6: Price change in percentage per year for Breda region
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Year Number of observations | Simple-weighted | fixed-sample hedonic
1985 21

1986 23 -0.9 7.1
1987 18 -5.4 6.0
1988 22 27.2 4.8
1989 29 -3.1 6.5
1990 37 3.0 1.9
1991 39 7.9 3.9
1992 47 8.2 8.8
1993 53 17.8 12.5
1994 67 4.9 10.8
1995 91 9.2 6.7
1996 100 13.3 9.3
1997 115 1.9 8.8
1998 129 9.8 8.9
1999 Oct. | 106 15.7 13.5

Table 7: Price changes in percentages for small market segment in Breda region
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Simple-weighted Fixed-sample hedonic

Year | Quarter | Month | Year Quarter | Month

Region 0.6% 1.2% 2.1% | 0.36% 0.6% 0.9%

District and House type | 2.5% 5% | 8.7% | 0.85% 1.2% 1.4%

Table 8: Table Standard deviation for simple-weighted and fixed-sample hedonic index

Breda region

The price changes are produced on a monthly, quarterly, and yearly basis, for the region
as a whole, and for an "average” district and house type. Table 8 shows the standard
deviations for both methods.

The differences between the two methods are striking. The standard deviation for the
fixed-sample hedonic method is 2 till 7 times smaller than for the simple-weighted method.
If a yearly regional price change of 10% is computed by the simple-weighted index the
95% confidence interval is provided by [8.8%;11.2%]. If it is computed by the fixed-sample
hedonic index this confidence interval is [9.3%;10.7%)]. For a monthly submarket price
change these intervals are [-7.4%;27.4%], and [7.2%;12.8%], respectively.

It can be concluded that the fixed-sample hedonic index is far more accurate. It is
possible to obtain reliable indices on a more detailed level, for small time periods, so it is
more up-to-date.

Of course the most recent price changes can be estimated less reliable than a price
change some periods before. Table 9 shows the standard deviations of the monthly price
changes for the Breda region at the end of the time period considered. In this example

the standard deviation rises from 0.60% till 0.77%.

9 CONCLUSIONS

This article presented a dynamic hedonic price model for selling prices of houses. The

model considered is a hierarchical trend model with general and cluster trends. The clus-
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Period 1999 | Price Change | Standard deviation
1/1-1/2 1.70% 0.62%
1/2-1/3 1.71% 0.61%
1/3-1/4 1.23% 0.60%
1/4-1/5 1.52% 0.60%
1/5-1/6 1.84% 0.60%
1/6 - 1/7 1.19% 0.61%
1/7-1/8 2.04% 0.62%
1/8-1/9 1.41% 0.63%

1/9-1/10 1.70% 0.66%

1/10 - 31/10 1.08% 0.77%

Table 9: Price Change Breda region for the fixed-sample hedonic index

ters are constructed by location and house type. This model can be seen as an extension
of a dummy variable model, with time varying constants for the different clusters. For the
general trend a random walk with drift is assumed, for the cluster trends random walks.
The coefficients of the explanatory variables are kept constant over time, location, and
house type. These kind of dynamic models, even with varying coefficients, can be put in
state space format, so they can be estimated by the (diffuse) Kalman filter.

Model results are shown for the regions Breda and Amsterdam. It is shown that an
estimate of the value of a house can be produced with an average standard deviation of
18% for the Amsterdam region, and 13% for the Breda region.

Fixed-sample hedonic indices were constructed from the trends of the hierarchical
trend model. These indices were compared with simple weighted indices. The question
was which method provides the most adequate price change for standardized houses of

constant quality, thereby measuring price changes in the market due to market forces only.

34



The findings of this research are summarized in the following.

For the house price indices of both the regional market and the inner-regional market
(small market segments), using the hedonic method more up-to-date, detailed, and reli-
able results were obtained when studying yearly price developments than while using the
simple-weighted method.

When small market segments with few transactions are concerned the use of the he-
donic method seems to be the only accurate price index construction method, especially
when indices have to be produced on a monthly or quarterly basis with even less trans-
actions per period. On a monthly or quarterly basis the simple-weighted method will

produce more unreliable results because of the small number of transactions.
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Variable Definition
HouseSize800 the minimum of the house size in cubic meters, and 800
HouseSizeRest the maximum of the house size in cubic meters - 800, and 0
PlotSize500 the minimum of the lot size in square meters, and 500
PlotSizeRest the maximum of the lot size in cubic meters - 500, and 0
GarageDetached | 1 if detached garage, 0 otherwise
GarageAnnex 1 if annex garage, 0 otherwise
GarageBuiltIn 1 if built-in garage, 0 otherwise
NRooms number of rooms
Agel1900 1 if year of construction < 1900, 0 otherwise
Agel920 1 if 1900 < year of construction < 1920, 0 otherwise
Agel945 1 if 1920 < year of construction < 1945, 0 otherwise
A if year of construction > 1945, selling year - year of construcion,
e

: 0 otherwise
Listed 1 if listed building, 0 otherwise
Term Sellingperiod in days
SalesConditions [ 1 of no legal charges, 0 otherwise

Time in months

selling date in months from 1 January 1985

MI interior maintenance, -1 Unkown,1 Perfect,2 Good,3 Reasonable 4 Moderate,5 Bad
ME exterior maintenance

Type of living Room, -1 Unknown, 1 L-Room,
LivingRoom

2 T-Room, 3 Z-Room, 4 Through Room, 5 Room en suite

Table 10: Variable definitions Breda region
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House Type

Description

10 Simple house

11 Middenstandswoning

12 Manor house

13 Residence

14 Countryhouse

15 Country Estate

16 Bungalow

17 Bungalow with a patio
18 Semi-bungalow

19 Split level house

20 Meanderhouse

21 Groundfloor flat

22 Upstairs flat

23 Groundfloor flat or Upstairs flat
24 House with a porche

25 Canalside house

26 Maisonette

27 Flat for the elderly

28 Flat with elevator

29 Flat without elevator
30 House with surgery, etc.
31 Drive-in home

32 Converted cottage/farmhouse

Table 11: Definition House types
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Variable | Coeflicient | Standard Deviation | T-value
MI1 0.0907 0.0062 14.54
MI2 0.0526 0.0041 12.70
MI4 0.0468 0.0091 -5.13
MI5 -0.1760 0.0219 -8.05
ME1 0.0593 0.0065 9.06
ME2 0.0467 0.0044 10.67
ME4 -0.0887 0.0096 -9.20
ME5 -0.1717 0.0233 -7.37

Table 12: Estimation results Maintenance Breda region
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Variable Coefficient | Standard Deviation | T-value
HouseTypel0 -0.058 0.0037 -15.81
HouseTypel2 0.107 0.0032 33.29
HouseTypel3 0.236 0.0064 37.09
HouseTypel4d 0.2690 0.0100 26.89
HouseTypeld 0.1441 0.0496 2.90
HouseTypel6 0.1757 0.0083 21.28
HouseTypel7 0.1979 0.0102 19.46
HouseTypel8 0.1657 0.0065 25.52
HouseTypel9 0.0191 0.0226 0.84
HouseType20 0.0223 0.1267 0.176
HouseType30 0.0567 0.0199 2.84
HouseType31 -0.0799 0.0119 -6.72
HouseType32 0.1068 0.0113 9.47
HouseType21 -0.1391 0.0238 -5.84
HouseType22 -0.1355 0.0219 -6.18
HouseType23 -0.2732 0.0294 -9.28
HouseType24 -0.0155 0.0235 -0.66
HouseType26 -0.1147 0.0152 -7.56
HouseType27 -0.2113 0.0289 -7.32
HouseType28 -0.0107 0.0089 -1.19
HouseType29 -0.0878 0.0090 9.71

Table 13: Estimation results House type Breda region

42




SubN | Level T-value | SubN | Level T-value | SubN | Level T-value
4835 | 0.068 2.74 (764) | 4841 | 0.018 | 0.53 (844) | 5121 | 0.002 [ 0.08 (819)
4836 | 0.050 1.38 (19) | 4854 | 0.040 | 1.18 (404) | 5122 | 0.002 | 0.08 (198)
4837 | 0.118 4.60 (226) | 48142 | -0.084 | -2.22 (36) | 5124 | -0.030 | -1.10 (40)
4847 | -0.041 | -1.64 (517) | 4271 | -0.095 | -4.18 (113) | 5165 | -0.073 | -3.32 (151)
4851 | 0.061 2.44 (379) | 4273 | -0.057 | -2.64 (175) | 48141 | 0.003 | 0.13 (402)
4856 | -0.114 -2.39 (7) | 4822 | -0.021 | -1.02 (577) | 4812 | 0.060 | 2.57 (492)
4858 | 0.055 0.90 (3) | 4823 | 0.041 | 1.98 (392) | 4815 | 0.042 | 1.77 (255)
4859 | 0.071 0.90 (1) | 4824 | -0.021 | -1.02 (684) | 4816 | 0.040 | 1.77 (179)
4902 | -0.115 | -4.64 (805) | 4901 | 0.100 | 4.97 (952) | 4825 | -0.005 -0.10 (6)

48181 | 0.018 0.71 (298) | 4907 | 0.064 | 3.21 (1448) | 4826 | -0.052 | -2.21 (492)

48182 | 0.109 4.26 (266) | 4921 | 0.073 | 3.52 (338) | 4827 | -0.038 | -1.53 (168)

48183 | 0.005 0.18 (207) | 4924 | 0.040 1.31 (27) | 4849 | 0.039 | 1.61 (169)

48184 | 0.138 4.06 (24) | 4931 | 0.061 [ 3.00 (492) | 4855 | 0.068 2.35 (43)

48185 | 0.087 3.01 (59) | 4941 | 0.034 | 1.65(509) | 4861 | 0.045 [ 1.77 (298)

48191 | 0.116 4.42 (144) | 4942 | 0.013 [ 0.61 (331) | 4903 | -0.075 | -2.23 (22)

48192 | 0.058 2.26 (240) | 4944 | -0.024 | -1.01 (97) | 4905 | 0.068 2.64 (88)

49040 | -0.579 -10.32 (4) | 5101 | 0.009 | 0.41 (265) | 4906 | 0.032 1.08 (40)

49041 | -0.104 | -4.20 (743) | 5102 | 0.007 | 0.34 (407) | 4908 | 0.071 | 2.99 (287)
4811 | 0.068 2.03 (460) | 5103 | 0.030 | 1.43 (366) | 4909 | -0.006 | -0.21 (67)
4813 | -0.068 | -2.01 (395) | 5104 | 0.019 [ 0.91 (312) | 4911 | 0.044 1.58 (50)
4817 | -0.051 | -1.54 (1074) | 5105 | -0.031 -0.70 (8) | 5111 | -0.023 | -0.89 (93)
4834 | 0.063 | 1.91 (1004) | 5106 | -0.050 [ -1.62 (25) | 5113 | -0.137 | -3.94 (19)
4838 | -0.001 -0.02 (57) | 5107 | -0.093 -1.20 (1) | 5114 | -0.154 -2.53 (3)
4839 | 0.015 0.41 (44) | 5109 | -0.002 | -0.09 (146) | 5125 | -0.028 | -0.76 (16)

5126 | 0.004 | 0.18 (239)

Table 14: Estimation results Sub&eighbourhood levels Breda region




