A Representational
Framework for Architectural Analysis

Abstract

Architectural objects are expressed through a variety of abstractions, each presenting a different
aspect. In an architectural analysis, abstractions can be treated as individual entities, categorized, and
. hyperlinked within an organizational structure. However, such systems lack the possibility to distinguish
Bige Tuncer individual components within the abstractions and to relate these within and between abstractions.
b.tuncer@bk.tudelft.nl Instead, by adopting a uniform language such as XML as a common syntax for representing these
Faculty of Architecture abstractions, these can be interpreted and broken up into components, these components related,
Delfe University of Technology and the relationships added to the representation. The result is a richer information structure: an
Rudi Stouffs integrated structure of components and relationships represented in a uniform way. This information
structure can provide new views not inherent to the original structure of abstractions, offering new

OJ|3UBTapOIY-0002,10BIDISH

.stouffs@bk.tudelft.nl ) . . X . A

F:ﬁﬁﬁysgmﬁﬁiécﬁunre mterpreta_ﬂons that cgn Ieadlto new abstractions. This paper d!scgsses a prototype_apphcanon for

Delft University of Technology representing abstractions using XML, and the strengths and limitations of XML for this task.
Resumen

Los objetos arquitectonicos se expresan a través de una variedad de abstracciones, cada una presentando
un aspecto diferente. En un andlisis arquitectonico, las abstracciones pueden tratarse como entidades
individuales, y ser categorizadas e hyperlinked dentro de una estructura organizacional. A tales sistemas
les falta sin embargo, la posibilidad para distinguir los componentes individuales dentro de las abstracciones
y relacionar éstos dentro de y entre las abstracciones. En cambio, adoptando un lenguaje uniforme,
como XML, como una sintaxis comdn para representar estas abstracciones, éstas pueden interpretarse
y partirse en componentes, estos componentes pueden relacionarse, y Ias relaciones pueden agregarse
ala representacion. El resultado es una estructura de informacion mas rica: una estructura integrada de
componentes y relaciones representadas de manera uniforme. Esta estructura de informacién puede
proporcionar nuevas nociones no inherentes a la estructura original de abstracciones y estas nociones
pueden ofrecer interpretaciones nuevas dando lugar a nuevas abstracciones. Este trabajo discute una
aplicacion prototipo para representar abstracciones que usan XML, asi como las ventajas y limitaciones
de XML para esta tarea.

Architectural analysis / abstractions

In education, as in architectural history, theory,and design, complete and thorough analyses
of architectural bodies or objects are indispensable.An architectural analysis is commonly
expressed through a number of abstractions.An abstraction can be a text, drawing, diagram,
model, picture, etc. Each abstraction describes a specific aspect of the object, such as
function, acoustics, structure, and organizational relationships (Tunger and Stouffs, 1999).
Treated as individual entities or documents, these abstractions can be categorized and
hyperlinked within an organizational structure. The Web offers numerous examples of
such presentations of architectural analyses (Tunger and Stouffs, 1999). These studies
provide effective ways of accessing and browsing information. However, in such
environments, the resulting information structure is generally rather sparse: the
organizational structure does not allow different components within the abstractions to
be distinguished and related. If enabled, this would offer a richer information structure
providing new ways of accessing, viewing, and interpreting the information.

We are developing a prototype application for the presentation of an architectural analysis
based on such a rich information structure. Though within a broader context, here we are
particularly concerned with documents that lack a strong inherent structure, i.e., text and
images. Both can be represented in a similar structure and operated on in a similar way:
divided into smaller parts and the parts organized in a hierarchical structure. XML
(eXtensible Markup Language) is particularly suited for the purpose of decomposing
abstractions, both in the form of text and images, and integrating them into a single
structure. XML is a meta-language that serves to define markup languages for specific
purposes. By specifying a grammatical structure of markup tags and their composition, a
markup language is defined that can be shared with others. Existing documents can easily
be converted to XML. Using tools for scanning texts and images and recognizing keywords,
concepts or patterns, such a conversion can be automated. The XML structure ensures
that the data is consistently organized and is both machine- and human-readable.
Furthermore, if the structures agree, XML documents can be plugged into a larger context.

T
S o _I D A Representational Framework for Architectural Analysis m



figure | - The integrated structure
of a collection of abstractions.

a) components
Eoh @
o
o DDDD T
B
o2 o oo JEJ
]
muﬂu
L HEE

oo

b) components grouped
into meta-components

o”

e R

c) relationships between
components

d) relationships between
components and meta-
components

e)abstractions
distinguished within the
network of components
and relationships.

m A Representational Framework for Architectural Analysis S

Rich information structures

Information structures are created, at a minimum, by a collection of information entities
(including authoring and other attribute information), an organization of these entities,
and a specification of the relationships between these entities (Tunger et al., 2000). In the
context of an architectural analysis, the individual abstractions, with their related information,
and the relationships between abstractions define the information structure. A richer
information structure can be achieved both by expanding the abstraction structure, replacing
abstraction entities by detailed component substructures,and by augmenting the structure’s
relatedness with content information.

In a syntactic manner an abstraction can be understood as a composition of components
and relationships between these components. We propose the adoption of XML as a
common syntax for describing these component substructures and their integration into
a global information structure. By using XML to re-represent abstractions, these can be
interpreted and broken up into components (Tunger and Stouffs, 2000). Furthermore,
abstractions can additionally relate through commonalities, similarities, and variations in
components. In XML, these components can be related within and between abstractions,
and these relationships added to the representation. The result is an integrated structure
of components and relationships, represented in a uniform way.

Such a tightly related structure offers new possibilities; most importantly, one can access
the information structure from alternative views to those that are expressed by the
individual abstractions. New compositions of components and relationships offer new
interpretations of the structure and generate views not inherent in the structure as
created by the original abstractions. Such interpretations can lead to new abstractions.

Representing architectural abstractions / prototype application

The input to the prototype application consists of a number of abstractions. The output
should be an integrated structure of components and relationships. In between, a number of
steps need to be traversed: abstractions are to be broken up into their components, these
components within and between documents related (Tunger and Stouffs, 2000) (figure I).

The system is composed of two main hierarchies: types and components. For easy handling
these are initially referenced and linked in the database, and later converted into XML
structures. The grammar of XML, i.e., the Document Type Definition (DTD), specifies the
structure of both hierarchies in the system: their elements, their nesting and additional
properties, and their attributes. Both hierarchies are recursively defined.

The hierarchy of types provides the semantics of how the components are related (Tunger
and Stouffs, 2000). This hierarchy may be incorporated from an external framework or
specifically defined corresponding to the subject of the analysis. This may require the
hierarchy to be constructed across the viewpoints of different groups or users. In the
database, the hierarchy is defined by specifying a parent ID for each subtype.This structure
is transferred to XML by using the type name as the tag, and by nesting the elements
according to the hierarchy. Types are linked to components as included elements.

The different abstractions are broken down into their components defining the component
hierarchy. Each component is identified by an ID.The abstractions in the form of images are
broken down into sub-images by determining the important components, in
correspondence to the types, and by cutting them up using an image processing application.
Similar to the type hierarchy, these components are recomposed in the database by
specifying a parent ID for each image component. Additionally, the top level abstractions
are given a special attribute for easy retrieval. Subsequently, each component is linked to
at least one type.The resulting component hierarchy is converted to an XML structure by
using the ID as the index, and by nesting the elements. Related types are specified as
included elements. Conversely, the abstractions in the form of text are immediately
structured in XML. Components within these can be referenced in the database by accessing
them as URLs. Similar to the image abstractions, components are related to types,and this
information is specified in the XML structure through included elements.

In this organization, relationships defined by the abstraction hierarchy initially relate
the components.Additionally, components that share the same type are implicitly related.
The type hierarchy further relates components, these relationships are derived from
the nesting in the types hierarchy. Finally, explicit relationships between components
can be specified as references to the component ID’s.These are transferred to the XML
structure as IDREFS tags.

ey
bt
-,



References:

Stouffs, R. and R. Krishnamurti (1997).
“Sorts: a concept for representational
flexibility.” In CAAD Futures 1997, R.
Junge (ed.), 553-564. Dordrecht:
Kluwer Academic.

Tunger B. and R. Stouffs (2000).
“Modeling building project
information.” In Construction Information
Technology 2000 conference
proceedings, 28-30 June 2000,
Reykjavik, Iceland.

Tunger B. and R. Stouffs (1999).
“Computational richness in the
representation of architectural
languages.” In Architectural Computing: from
Turing to 2000,A. Brown, M. Knight and P.
Berridge (ed.), 603-610. Liverpool:
eCAADe and The University of Liverpool.

Tunger B., R. Stouffs and LS. Sariyildiz
(2000). “Collaborative information
structures: educational and research
experiences”, In Analysing and Modelling
Collective Design Workshop, Fourth
International Conference on the Design of
Cooperative Systems, 20-28. Sophia
Antipolis, France.

The XML structures form a flexible source for further manipulation and traversal.
Components can be flexibly categorized and grouped according to their relationships and
attributes, offering various views of the information structure.Views can be traversed and
linked using both explicit and implicit relationships.

Representational flexibility / sorts

From a representational point of view, the components and relationships recognized
within an abstraction can be said to form a language (Tunger and Stouffs, 1999).When the
abstractions are numerous and diverse, recognizing their relationships and collating the
abstractions into a single structure creates a tight network, where the individual abstractions
no longer stand out. Such a network of abstractions can be said to embody a rich
representation. The representation of this network specifies a language and vocabulary for
the structure. This meta-language is a composition of the languages of the original abstractions.

However, when working with graphical models, the situation is quite different and one
would need other, more sophisticated, forms of representation in order to apply this
concept. Analyses commonly include other data formats than texts and images, such as
drawings, models, and numerical analyses, integrating these into a rich representation.
This requires a different representational language as well as a somewhat different approach
for decomposing the abstractions and recognizing the relationships, as dependent on the
format. In this context, XML is no longer sufficient as the common representational language.

Both collating abstractions into a single structure and slicing new abstractions requires a
comparison and mapping of the respective languages and vocabularies and the (information)
structures expressed in these. Sorts, an approach to representational flexibility (Stouffs
and Krishnamurti, 1997), can provide support for this. Sorts specifies a common syntax,
allowing for different vocabularies and languages to be created, compared, and related.
Hereto, it specifies formal operations on sorts and recognizes formal relationships
between sorts. Primitive sorts correspond to simple data types, including a behavioral
specification. Primitive sorts combine into composite sorts under the formal operations,
their behaviors derive from the behaviors of the component sorts. Whereas the formal
operations and relationships enable the comparison and mapping of vocabularies and
languages, the behavioral specification of sorts supports the mapping of information
structures onto different languages.

A Representational Framework for Architectural Analysis E



