
Towards a Working Design Environment: from Enterprise to Functionality Model
1

Towards a Working Design Environment:
from Enterprise to Functionality Model

Abstract

Several product-modelling initiatives have produced static descriptions of the architectural and
geometrical objects capable of describing architectural design projects. Less attention is paid to the
development phase in which these static models are transformed into workable architectural design
environments. In the context of the IDEA+ research project (Integrated Design Environment for
Architectural Design) emphasis lies on the systematic development of both phases. The result is an
analysis model that consists of two submodels. On the one hand, the enterprise model defines the
architectural and geometrical objects, their methods and their relation with other objects. On the
other hand, the functionality model organises the functionality objects � ranging from single-event
objects to complex-workflow objects � in a layered and easily expandable system. As such, it closes
the gap between the static enterprise model and the dynamic design environment as a whole.

Resumen

Diferentes iniciativas en el área de �product modelling� han producido descripciones estáticas de los
objetos arquitecturales y geométricos que constituyen un proyecto arquitectural. Pero el procedimiento
en el cual un modelo estático se transforma en un sistema factible está menos investigado. El proyecto
IDEA+ (Integrated Design Environment for Architectural Design) se enfoca hacia el desarrollo sistemático
de las dos fases complementarias. Esto resulta en un modelo de análisis dividido en dos submodelos.
El modelo de empresa define los objetos arquitecturales y geométricos, sus acciones y las relaciones
con otros objetos. El modelo de funcionalidad organiza los objetos de funcionalidad - una gama de
acciones simples hasta muy complejas - en una estructura en capas y fácilmente extensible. Este modelo
provee la transición entre el estático modelo de empresa y el factible y completo área de diseño.

Introduction

A uniform building representation

A uniform building representation can be of great help during the entire course of the
design process. Ideally this building representation is located in an integrated design
environment (Neuckermans 1992).

For the architectural designer on the one hand, he can call the assistance of modelling and
evaluating tools situated in the environment. And by using the computer from the early
stages in the design process, the unproductive translation of a design made by hand into a
digital version would be avoided.

For all partners involved in a building’s life cycle on the other hand, they can use and
contribute to one single building representation, instead of producing their own. Next to
avoiding the waste of time and manpower, the communication between the building
partners will improve and inconsistencies between models will be avoided. To make this
possible, the digital building representation should be located at a central and accessible
place (using web technology).

MERODE, an object-oriented analysis method

Several product-modelling research initiatives have produced static descriptions of the
architectural and geometrical objects capable of describing architectural design projects.
Less attention is paid to the development phase in which these models are transformed into
workable design environments. In the IDEA+ research project (Integrated Design
Environment for Architectural Design, Hendricx et al. 1998, Hendricx and Neuckermans
1999, Hendricx 2000) emphasis lies on the systematic development of both phases. This
goal was achieved by leaning on the object-oriented analysis method MERODE (Model-
driven Existence-dependency Relationship Object-oriented Development, Snoeck et al. 1999).

 To manage complex problems, analysis objects are systematically partitioned in objects of
the problem domain and objects that embody functionality. The result is an analysis model
that consists of two submodels: enterprise model and functionality model (figure 1). The
enterprise model acts as a solid kernel on top of which functionality is modelled, leading
to a set of independent function object classes. For both modelling phases the specification
techniques are clearly defined.

Ann Hendricx
ann.hendricx@asro.kuleuven.ac.be
K.U.Leuven, Faculty of Applied Sciences,
Department of Architecture, Urban
Design and Planning

Herman Neuckermans
herman.neuckermans@asro.kuleuven.ac.be
K.U.Leuven, Faculty of Applied Sciences,
Department of Architecture, Urban
Design and Planning

figure 2 - The functionality model closes the gap
between the enterprise model and the design
environment

figure 1 - Enterprise model and functionality
model

Towards a Working Design Environment: from Enterprise to Functionality Model
2

The enterprise model

The first column in figure 1 shows the steps to be taken during enterprise modelling.
Pointing out the relevant enterprise object types and the static relationships between
them leads to a model apt to give a static description of a design project. In addition,
event object types describe the fundamental behaviour of the enterprise object types.
The associations between enterprise object types and event object types are represented
in an object-event table. The class definitions (of both enterprise objects and event objects)
gather all information acquired in the previous modelling phases. In the last step, these
class definitions are further refined by adding attributes and constraints, and by elaborating
the object methods.

At this stage, the core model developed in the context of the IDEA+ project gives the
detailed descriptions of both enterprise object types and event object types (Hendricx
2000). Prototype implementations both in legacy software (using a relational database)
and using object-oriented technology have been built and validated by means of actual
design cases. As to the envisaged global design environment, the underlying structure has
been developed, i.e. a graphical kernel and a simplified data structure kernel have been
implemented and are used in the development of new packages. Current efforts focus on
the development of a geometrical modeller and a fully interactive lighting tool for the
early design phases (Geebelen 2000), both examples of newly-developed en-suite tools
that make use of one and the same core object model.

The functionality model

Towards an implementation strategy

The functionality model organises the functionality objects – ranging from single-event
objects to complex-workflow objects – in a layered and easily expandable system. It is
created on top of the enterprise model and closes the gap between a static enterprise
model and the dynamic design environment as a whole (figure 2). For instance, our above-
mentioned daylight tool can communicate with the core object model through functionality
objects elaborated in this phase.

From now on, the model’s description is no longer completely independent from its later
implementation. MERODE presents implementation schemes towards both object-
oriented technology and more legacy technologies. The presented functionality model
follows an object-oriented implementation strategy, since this is the route we are taking
in the IDEA+ project.

MERODE’s layered approach

MERODE’s presents a layered system architecture (figure 3). Higher-level events and
functionality are composed of lower-level events, leading to a system of cascading event
definitions. The basic behaviour of the enterprise objects is located at the two lowest
levels and is described in the enterprise model. The object methods - defined in the class
definitions of the enterprise objects - are located in the Methods Layer. In the Atomic
Event Layer, an atomic event triggers all methods with the same name by broadcasting its
message across all enterprise objects.

In the Functionality Layer we find:

- consistent events: a mandatory series of atomic events to ensure the object database’s
consistent state

- tasks: a voluntary series of atomic events to improve efficiency

- input and output services: input and output functions for the communication between
core model and outside world

At the highest level MERODE situates the complex workflows, which make up the interface
between the user and the software system.

Describing functionality object types

The techniques for describing functionality objects are illustrated by an example: the input
and output service TRANSFORM-ENTITY (Hendricx 2000). An application program built
on top of the core object model can use this function to change an entity’s geometry or
topology by a rotate, move, scale or stretch operation. These are operations that may
start a series of cascading events.

figure 3 - Functionality in MERODE’s layered
system architecture

figure 4 - Textual description of the TRANSFORM-
ENTITY function

figure 5 - Final State Machine of the
TRANSFORM-ENTITY function

figure 6 - An impression of the functionality built
on top of the core object model

Towards a Working Design Environment: from Enterprise to Functionality Model
3

The final goal of the functionality-modelling phase is a collection of class definitions
describing the functionality objects. These descriptions should be as complete as possible
to improve later implementation. Several notation techniques may complement each
other:

- textual description (figure 4)

- Final State Machine (figure 5), with the alternative sequences of events

- Service Specification Diagram, focusing on the events and the involved enterprise objects

Functionality in an architectural design environment

By following the MERODE methodology, we end up with a layered system of event types,
tasks and services. Higher–level event types may be composed of lower-level ones. By
working with encapsulated objects, a function’s contents can change with minimal effects
on other functionality object types. Figure 6 gives an impression of possible functionality
building blocks. Here the Functionality Layer of figure 3 is subdivided for the three above-
mentioned functionality objects.

An event such as CREATE-TYPE-LINK in the Atomic Event Layer is broadcast across
all the enterprise objects in the lower layer and triggers all methods sharing the same
name. And the same event CREATE-TYPE-LINK is used as a building block to compose
the consistent event C-CREATE-CAAD-ENTITY. For efficiency, frequent sequences
of consistent and atomic events can be defined as tasks, e.g. T-REPRESENT-ENTITY
and T-UNREPRESENT-ENTITY.

In the Input Output Layer, a service such as DESIGN-WALL combines lower level tasks
(e.g. T-REPRESENT-ENTITY) and consistent events (e.g. C-CREATE-CAAD-ENTITY).

Since one can rely on existing building blocks, adding new functionality becomes easy. This
stepwise-elaborated functionality is an attractive MERODE feature, especially since adding
functionality is often a point paid less attention to in product modelling initiatives.

Conclusion

A systematically developed functionality model is the stepping-stone between a static
product model for architectural design and a workable integrated design environment.
The use of the object oriented analysis method MERODE leads to the development of a
layered and easily expandable system of function objects. As it is now, prototypes of such
function objects in the context of architectural design have been elaborated. Following
work will include the testing of the above structure by elaborating the functionality for a
new natural lighting design tool.

Keywords: integrated design environments, product modelling

Palabras claves: sistemas integradas de diseño, product modelling

References

Geebelen, B. (2000) “IDEA-l, An Early-
Stage Architectural Design Tool for Na-
tural Lighting”. In Proceedings of IBPC2000,
Eindhoven, The Netherlands, September
18-21, 2000.

Hendricx, A., Geebelen, B., Geeraerts, B.
et al. (1998) “A methodological approach
to object modelling in the architectural
design process”. In Proceedings of the 4th
International Conference on Design and
Decision Support Systems in Architecture and
Urban Planning , Maastricht, The
Netherlands, July 26-29, 1998, CD Rom
publication.

Hendricx, A., Neuckermans, H. (1999)
“About objects and approaches: a
conceptual view on building models”.
In Computer in Building/ Proceedings of
the C AADfutures’99 Conference ,
Proceedings of the 8th International
Conference on Computer Aided
Architectural Design Futures, Atlanta,
Georgia, June 7-8, 1999, AUGENBROE,
G., EASTMAN CH. (eds.), pp.133-148,
Norwell, MA: Kluwer Academic
Publishers.

Hendricx, A. (2000) A core object model
for architectural design. Ph.D. Thesis,
Faculty of Applied Sciences, K.U.Leuven
university, Leuven.

Neuckermans, H. (1992) “A conceptual
model for CAAD”. In Automation in
Construction, vol 1, nr 1, pp. 1-6.

Snoeck, M., Dedene, G., Verhelst, M. et al.
(1999) Object-oriented Enterprise
Modell ing with MERODE . Leuven:
K.U.Leuven University Press.

