
IFChub: Multimodal Collaboration Platform with Solid
Transactional Guarantees

Vitaly Semenov, sem@ispras.ru
Institute for System Programming RAS, Russian Federation

Stephan Jones, stephan@ifchub.com
IFChub Ltd., United Kingdom

Abstract
This paper presents an innovative software platform IFChub intended to build advanced
collaborative environments and to conduct multidisciplinary projects in architecture, engineering,
and construction. Partial attention in the paper is paid to principal features of the platform and its
key distinctions from existing BIM servers. The platform enables IFC-driven building information to
be shared concurrently among project stakeholders under different collaboration modes and to be
managed strongly in correspondence with ACID or BASE transaction principles. In this paper we
argue the importance of underlying BASE principles for BIM servers and explain how they can be
satisfied within the IFChub platform using optimistic replication. Supporting both standard file
exchange and system integration via unified software interfaces, the platform assumes a relatively
easy migration path from existing single-site applications to advanced multi-modal collaborative
environments. The presented IFChub platform v1.0 has been released and is freely available for
validation and integration purposes.

Keywords: BIM servers, IFC, DBMS, ACID, BASE

1 Introduction
Recently, commercial and free model servers are becoming available and start to gain popularity to
conduct complex multidisciplinary projects in industrial sectors such as shipbuilding, automotive,
petrochemical, pharmaceutical, and construction. The key factors motivating the deployment of
model servers and the building collaborative environments for such purposes are as follows:

— participation of small, medium and large enterprises having heterogeneous information
infrastructures corresponding to their specific business profiles and practices

— involvement of a large number of individuals and teams with own roles, responsibilities,
expertise, skills and tools to solve particular problems

— high concurrency of design and engineering processes
— complexity of the information circulated among project stakeholders
— large volumes of data to be managed and processed effectively.
International industrial and academic communities made a significant contribution to the

standardization of information models and software interfaces in the scope of STEP, IFC, CIS/2,
POSC/CAESAR initiatives and corresponding ISO technical committee activities (ISO 10303, 1994).
However, these have not been comprehensive from a software engineering perspective, the
mentioned standards admit a variety of implementations based on different principles,
architectures, middleware, and datastores. Particularly, the standards do not regulate the issues
principal for the creation and the use of model servers and, particularly, BIM servers as database
management systems (Semenov et al 2004).

BIM servers are special database systems that underpin building information sharing between
multiple users. Most servers are based on propriety data models, which simplifies system
integration within the same product line but prevents interoperability with/between third-party
software systems and multi-disciplinary collaboration.

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Some companies have declared IFC-compliant collaboration platforms. Particularly, these are
A360 Collaboration for Revit by Autodesk (A360, 2015) and BIM+ by Nemetschek (BIM+, 2015),
BIMsight by Tekla (BIMsight, 2015). However, these platforms have limited capabilities for updating
and sharing IFC models among multiple users and cannot therefore be regarded as IFC model
servers. Current features including visualization and analysis are clearly insufficient for these
purposes.

IFC model servers are database systems that represent building models in strong
correspondence with the IFC standard and provide query evaluation and data manipulation facilities
to manage multi-user collaboration sessions. Reference examples include EDM Model Server by
Jotne IT, Eurostep Model Server, IFC Model Server by VTT Building and Transport and SECOM Co.,
and Open Source BIM Server. For brevity we omit here features and implementation details of these
systems, addressing the readers to analytical surveys (Jorgensen et al 2008; Shafiq et al 2012).

2 ACID versus BASE
In computer science, ACID (Atomicity, Consistency, Isolation, and Durability) is a set of principles
that guarantee database transactions are processed correctly. Although the abbreviation was first
introduced in 1983 (Haerder & Reuter 1983), recently the ACID principles are commonly
recommended for any traditional DBMS.

Atomicity principle implies that either all the operations in a transaction must happen, or none
of them. The transaction must be completed if successful or rolled back if it fails. This principle
works well for short transactions but it is unlikely to be productive for long transactions peculiar to
typical collaborative sessions and workgroup design and engineering activities. The obtained results
of individual works should be consolidated as much as possible even if some particular operations
are unsuccessful. Decomposition of transactions into independent parts might be one of the
promising approaches to meaningful relaxation of this principle.

Consistency principle assumes that any transaction brings the data from one valid state to
another. This term is broad in scope and may have different meanings depending on the specific
context. Usually it means both logical coherence and correctness of data. Valid data must avoid
contradictory states and must satisfy the imposed integrity rules. In fact, the data coherence is a
property that allows the attenuation caused by pending updates of partitioned or replicated data.
The data correctness is a critically important requirement as any violated integrity rule may result
in the data corruption and uselessness for further transactions.

Isolation principle avoids any interference of simultaneous transactions with each other.
Intermediate results within a transaction must remain invisible to other transactions. Often this
property is defined as a serializability implying that the concurrent execution of transactions results
in a data state that would be obtained if transactions were executed serially, one after the other.
Insufficient isolation may result in well-known anomalous phenomena such as dirty writes, dirty
reads, non-repeatable reads, lost update, phantoms, skew reads, and skew writes (Berenson et al
1995). This principle seems to be a strong requirement for collaborative environments as results of
individual sessions should be deterministic and predictable even if collective activities run in
parallel.

Durability principle assumes that results of completed transactions cannot be discarded. They
must persist even in the event of power loss, system crashes or errors. To defend against these
events, the transaction results need to be stored permanently in a non-volatile memory, e.g. hard
disks.

The IFC model servers, being special DBMS, should follow the ACID properties too. However,
of the four ACID properties, consistency and isolation principles are often neglected or relaxed to a
significant extent. But these are crucial for the practical success of BIM servers operating with
complex IFC models and providing AEC clients with effective multi-access to the shared models.

As mentioned above, the database consistency implies, in particular, that all the imposed
integrity rules must be satisfied. Notice that the IFC schema is quite complex from a semantic point
of view. Table 1 demonstrates significant evolution and complexity growth of the IFC schema since
1997 when its first version was adopted, to 2013 when the recent IFC 4 version shipped. Over those
years the total number of data types, procedures, functions and rules has been significantly
increased.

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Table 1 Some statistics for the evolved standard IFC schema

IFC SCHEMAS
(ADOPTION YEAR)

IFC 1.5.1
(1997)

IFC 2.0
(1999)

IFC 2.x
(2000)

IFC2x2
(2003)

IFC2x3
(2006)

IFC 4
(2013)

ENTITIES 186 290 370 623 653 766
USER-DEFINED
TYPES

95 157 228 312 327 391

DERIVED
ATTRIBUTES

44 45 41 55 96 105

PROCEDURES
FUNCTIONS

25 27 25 37 38 42

ENTITY WHERE
RULES

107 168 196 271 340 638

TYPE WHERE
RULES

12 12 13 16 24 24

UNIQUE RULES 1 3 14 14 17 4
GLOBAL RULES 0 0 3 3 2 2

Several ambiguous operations or a few uncoordinated transactions can violate integrity rules

and destroy the consistency of the whole IFC model. In such cases the model becomes incorrect and
useless for subsequent processing. Maintaining the IFC model in a consistent state is a serious
problem that must be resolved by both BIM server and client application sides. The responsibility of
application-side code is to guarantee the correctness of isolated transactions in terms of maintained
data consistency. It is quite difficult for the application programmer to write robust code that would
take into account all combinations of operations and be able to analyse their potential affect on the
validity of the IFC rules. Therefore, the server-side code must incorporate calls to check the
committed transactions and to confirm that the target IFC model undergoes consistent revisions
allowing subsequent processing sessions.

Unfortunately, none of the mentioned BIM servers can control that every committed transaction
left the IFC model in a consistent state, none of these solutions can guarantee that the conflicts
between concurrent transactions, if they occurred, resolved in a consistent manner. Thereby, the
consistency property is neglected in recent BIM server implementations.

It is worth mentioning well-known software tools to validate IFC files against rules specified by
the IFC schema (IFC Toolboxes, 2015). Basically, the available validation tools are
EDMmodelChecker, Express Engine, IfcObjectCounter, STEP Conformance Checker, and
SemanticSTEP Checker. Invoking these for each committed transaction looks unrealistic due to
significant computational costs exceeding the processing of transactions. Being invoked periodically
the tools are also ineffective because they they fail to identify transactions and client applications
that have disturbed the data consistency. Therefore, obvious requirement is to roll back all
subsequent transactions as last revisions cannot be trusted.

Insufficient isolation is another problem preventing the reliable use of BIM servers for
collaboration purposes. Interference of transactions and loss of ability to serialize, results in the
uncertainty of collective sessions and data consistency violations even if the clients run correctly
when being isolated. The concept of the shared BIM assumes that its parts can be accessed
concurrently. To coordinate concurrent access the data items are usually locked within so-called
pessimistic transaction models. Serializable transactions acquire share locks on the data items they
read and exclusive locks on the items they write. These locks are held until the transaction commits
or rolls back. Pessimistic transaction models help to avoid some anomalies, but degrade the
concurrency due to increased data contention.

BIM data items can be potentially locked at different granularity and isolation levels. We
distinguish three levels for IFC models being represented within an object-oriented paradigm: at an
entire model, at level of objects, and at level of object attributes. Isolation level and concurrency are
inversely related. A lower isolation level enables greater concurrency, but with greater risk of data
inconsistencies. A higher isolation level provides a higher degree of data consistency, but at the
expense of concurrency.

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Shared access to entire IFC model in read mode and exclusive access to entire IFC model in
write mode correspond to high isolation level. After a transaction has obtained an exclusive model-
level lock, the data becomes entirely unavailable for all other transactions which have to be blocked
until the transaction commits or rolls back. A transaction that needs data access and requires an
exclusive lock cannot start until there are no active transactions on the model. High isolation
prevents all sorts of anomalies and guarantees the IFC model remains consistent, certainly, on the
condition that individual clients, being IFC-compliant applications update it concordantly. This
transaction model is well suited to downstream design and engineering workflows allowing serial
execution of works. However, it is quite onerous for concurrent activities performed within large
work packages by teams under strict time deadlines. As typical transactions in CAD/CAE
applications are quite long, such isolation may result in the unproductive collaboration sessions.

The object-level and attribute-level locking is more promising for concurrent design and
engineering sessions. But they cannot preserve semantically complex data on violations. Indeed,
according to the Table 1, the IFC schema in EXPRESS language predefines so-called WHERE rules
interrelating attributes of separate objects as well as UNIQUE and GLOBAL rules establishing
relationships on object type extents. To support the ability to serialise transactions and to maintain
the IFC model in a consistent state, the clients must preliminary lock those objects and/or attributes
which are subjected to reads or updates. Obviously, that attribute-level locking would be not
sufficient to reliably keep the data in states concordant with the WHERE rule. More detailed
analysis shows that object-level locking is also not safe from the consistency violations and entire
object type extents should be locked to eliminate risks of disturbance of the UNIQUE and GLOBAL
rules. But this way brings us closer to model-level isolation with severe restrictions on the data
availability and the transaction concurrency.

Thus, reasonable trade-offs between consistency and concurrency is hardly achieved when
enforcing ACID properties. This observation is a consequence of a more general “CAP theorem”
(Brewer 2010). In practice, many DBMS allow selective relaxation of these properties for better
performance and scalability. For example, NoSQL systems such as Amazon’s Dynamo, Google’s
BigTable, HBase, Hypertable, Cassandra, SimpleDB generally do not provide ACID transactional
properties, but follow to BASE (Basically Available, Soft state, Eventually consistent) principles
(Cattell 2010). As opposed to immediate consistency, eventual consistency here means that fetched
data is not guaranteed to be up-to-date, but updates are guaranteed to be propagated to all replicas
eventually. This allows them to replicate and partition data over many servers and support
extremely high loads of simple operations. With the advent of the web sites where thousands and
millions of users may both read and write electronic mail, personal profiles, web postings, wikis,
and many other kinds of data, scalability and performance have become a more important
requirement than permanent consistency.

BASE principles are widely deployed in distributed DBMS, often under the moniker of
optimistic replication. In contrast to pessimistic transactions restricting concurrent access to shared
data, optimistic replication avoids blocking data items and provides immediate access to data
entirely without any preliminary locking. As opposed to pessimistic replication enforcing replicas to
be identical, there is no need to wait for all of the diverged replicas to be synchronized when
updating data. But the advantages in concurrency are realized due to weakening permanent
consistency. Moreover, different diverged replicas must be periodically converged using syntactic or
semantic reconciliation, which might then prove difficult or even insoluble. By this reason, BASE is
sometimes criticized as increasing the complexity of distributed software applications (Gilbert &
Lynch 2002). However, sacrifying ACID in favor of BASE, optimistic replication technologies are
widely used in such domains as collaborative environments, software configuration solutions,
mobile databases, distributed services (Saito & Shapiro 2005). These observations inspired us to
develop IFChub platform mainly following to BASE assumptions, but maintaining ACID properties
when it is possible.

3 IFChub collaboration platform
IFChub is an acronym for IFC Compliant, Horizontally Scalable, Uniform Accessible, ACID/BASE
Solid collaboration platform for architecture, engineering and construction. The platform enables
IFC-driven building information to be shared concurrently among project stakeholders under
different collaboration modes and to be managed with solid ACID/BASE guarantees (IFChub, 2015).

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

The platform comprises an IFChub model server running under Tomcat application server, general-
purpose PostgreSQL DBMS used mainly for administration purposes as well as STEP metadata
services intended to manage IFC-driven data and to solve related computational problems.

Figure 1 presents a typical configuration of the deployed collaboration environment. With this
configuration IFChub model server, DBMS and computational services run on different computers
providing the best scalability and performance. Other configurations, for example, hosting IFChub
server, DBMS and single STEP service on the same computer, are also admitted. To administrate the
collaboration environment and to perform some end-user activities interactively, IFChub Web client
to the server is provided too.

Within IFChub platform BIM data are interpreted and processed in strong correspondence with
the standard IFC2x2, IFC2x3, and IFC4 schemas formally specified in EXPRESS data modelling
language. Complete sets of data types, consistency rules, derived and inverse attributes are
supported without any limitations and misinterpretations of the schema semantics. It is achieved
due to deployment and utilization of the metadata dictionaries semantically equivalent to the
original IFC specifications.

IFChub platform supports and leverages both vertical and horizontal scaling. The platform
capacity can be increased (vertical scaled) by adding more resources, e.g. updating multi-core CPU,
extending RAM, adding extra or larger hard drives to the existing computer network. It tends to
provide higher availability of data and improves performance. However, scaling up usually requires
downtime while new resources are being added and has limits induced by known technical and
economic reasons. It’s generally better to spread the cost of infrastructure across many inexpensive
and relatively disposable nodes than concentrate it in a few very high value components. Single or
few points of failure are best avoided.

An important feature is that IFChub model server can be scaled out horizontally. It is
accomplished by adding more commodity hardware nodes to the IFChub cluster and running more
STEP services there. They can be spread across heterogeneous infrastructures of the organisations
involved in a multidisciplinary project, they can be also located in datacenters if the organisations
have no proper infrastructure of their own. Running on top of a computer cluster the IFChub model
server balances load of STEP services taking into account available resources of each individual
node and computational tasks to be carried out. The architecture of IFChub platform and,
particularly, supported automatic registration of services, provides administrators with the ability to
increase capacity of the platform as a single logical unit on the fly without disrupting workability of
the deployed collaboration environment.

IFChub provides a straightforward JSON-based API through HTTP and protocol buffers for
basic (PUT, GET, POST, and DELETE) functions. Uniform IFChub API separates clients from the
model server so that clients are not concerned with data storage and processing, and the server is
not concerned with the user interfaces and client functionalities. IFChub API is uniform in the sense
that it allows clients to access databases, projects, revisions, deltas, objects, attributes, elements in a
uniform way independently of a particular IFC schema. Noteworthy, deltas between the nearest
revisions are also represented as collections of persistent objects enabling clients to compare
different revisions and to identify what changes have occurred since the previous session. Deltas are
also used to submit transactions entirely using their representations encoded in JSON and SPFF file
formats.

CLIENT A

IFChub
WEB

IFChub
WEB

IFChub
SERVER HTTP TCP/IP

Application
SERVER

JDBC

SQL

STEP
SERVICE

STEP
SERVICE

STEP
SERVICE

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

IFChub API is organised as function sets basically intended to query IFC data, to manipulate
data and to analyse data. To request data beloning to a particular IFC model revision, an object-
oriented query language is used with the features described below. Special functions are provided to
manipulate data at different aggregation levels corresponding to separate projects, revisions,
objects, attributes, and collection elements. Manipulation operations can be transferred and
interpreted sequentially one after another or within a single operation bucket providing higher
performance. Finally, statistical data on a particular revision, summary results of the comparison of
different revisions, or status of the revision compliance with an IFC schema can be obtained by
invoking analysis functions. Such results are encoded as HTML files so that the prepared pages can
be shown immediately using popular web browsers.

The IFChub query language combines capabilities to define both object predicates and
navigation rules. The object predicates are specified as logic expressions in full correspondence with
the EXPRESS language and the underlying IFC schema. So it looks natural the IFChub employs the
same language to specify both data schema and queries to its instantiated data units. Navigation
rules help to define spread queries aimed at extraction of heterogeneous collections of objects
accessible though propagation along associations from one object to another. In combination spread
queries and object predicates enable to specify complex queries, particularly, model view definitions
(MVD) adopted by IFC community (MVD, 2015). IFChub queries may be specified and applied as
ad-hoc requests and stored procedures. In both cases they are represented as objects and are
encoded in JSON or SPFF formats.

4 Multirevision management
IFChub server processes client transactions which may be either read or write. A new IFC model
revision appears whenever the client commits a write transaction or checks in a new IFC file. Read-
only transactions do not produce revisions. Existing revisions can never be changed. Therefore, the
full transaction history is represented as a model revision tree with the root corresponding to the
initial data and leaves — to its terminal revisions.

Figure 1 Typical configuration of collaboration environment based on
the IFChub platform

Figure 2 IFC model revision tree and indexing policy

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

The root revision is assigned the number 1.1. The next revision takes the number 1.2, the next
succeeding — 1.3 and so on. Thus formed branch (with two digits in the number) is called main
branch (see Figure 2 to understand the applied revision indexing policy). New minor branches (with
four or more digits in the number) are created by committing write transactions on non-terminal
revisions in the main or other branches. New branches can be created intentionally to maintain
alternative realizations of the same AEC project. In such cases the branched revision can serve as a
root IFC model for a new project alternative to the original one. New branches can be created
occasionally as a result of committing concurrent transactions proceeding on the same revision.
Collaboration environments must provide opportunities to both individuals and groups to work in
parallel with a recent project revision. If all the transactions are successful, the first committed
transaction produces a new revision on the original revision branch, and other committed
transactions produce revisions on minor branches.

To reduce the entropy of occasionally produced revisions and to consolidate results of
individual efforts and groupworks, the revisions should be merged. For this purpose, so-called
three-way merging and delta calculus are applied. A common ancestor is determined and deltas for
the merged revisions are computed beginning from the ancestor revision. Then, deltas are analysed
against potential conflicts and if no conflicts are detected the deltas are consolidated into resulting
one, which being applied to the ancestor produces a new final revision. Merging can be done in
manual or automatic mode. The automatic mode enables this process to be hidden from software
developers and end-users entirely and removes the transaction concurrency analysis from their
responsibility.

Delta calculus is applied in the IFChub platform by another method. Storing all model revisions
is ineffective from the standpoint of hard disk space consumption. The IFChub server manages
changes and stores only partial deltas between nearest revisions instead of full representations.
Taking into account large size of IFC models for typical AEC projects and relatively low percent of
changes between sequential revisions, the total space saving can be significant.

Every partial delta is represented as a list of elementary changes induced by operations of a
submitted write transaction or recognized by differencing of checked-in IFC files. Check-in
operation behaves as a transaction with one difference that partial delta with respect to a previous
model revision should be additionally computed. Because not all the IFC objects have their own
GUID, delta computations are based on inexact matching of object type extents in recent and
previous model revisions. Once all subsequent partial deltas are persistently stored, most saving
policy would consist in preserving the root revision. Then any model revision as well as delta
between any two revisions can be recovered when it becomes necessary.

Indeed, having an original revision and a delta , the subsequent revision can be

Figure 3 Merging IFC model revisions

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

obtained by applying delta changes to the original revision. Using algebraic operations it can be

formally written as . For the presented example, the revision can be obtained as

. The deltas are bi-directional ones meaning that backward process
is also supported and there is a capability to roll back the recent revision to the original one using

an inversion operation . Then, having a recent revision and a delta , the original

revision can be always recovered as . Obviously, that the addition and

subtraction operations are not commutative here. For deltas incident to a common revision, the

following identities hold: and . For the given example, if changes

between the revisions and need to be obtained, it can be done using partial delta

calculus as follows: . Finally, we

define three-way merging operation , where the

revision is a common ancestor of the revisions , to be merged and is a delta

reconciliation operation. It can be rewritten in terms of deltas as .

The reconciliation operation acts as a theoretically-set union of deltas if the deltas do not conflict,

and as an empty set if some conflicts are detected. In the example presented, revision has been

obtained by merging revisions and with common ancestor .

5 Multimodal collaboration with solid transactional guarantees
IFChub model server provides both pessimistic and optimistic transactions. In combination they

support multimodal collaboration sessions corresponding to varied levels of concurrency and
consistency trade-offs. It is noteworthy that every supported transaction model strongly obeys
either ACID or BASE principles. Ensuring these principles can be holistically satisfied using multi-
version and change management facilities discussed in previous Section 4.

Because every successful transaction leads to a new revision, and unsuccessful — to roll back to
a previous one, there is no problem to guarantee atomicity and durability. Any revision can be

recovered by applying direct deltas to its persistent ancestor, for example, to the initial revision
which is always stored on disk. Any revision can be obtained by subtracting deltas from its
persistent successor, for example, from terminal revisions which are usually stored on disk in
expectation of session recovery.

The isolation of pessimistic transactions and their serializability are provided by locking model
revisions entirely. Locks at other granularity levels, i.e. at object and attribute levels, are not
supported for the reasons explained in Section 2. Any model revision can be locked exclusively for a
single write transaction. Locking a revision entirely provides full isolation, avoids any anomalies
and eliminates potential semantic violations that could happen because of concurrent writes. There
are no obstacles for multiple read transactions even if the revision has been preliminary locked by
an exclusive write transaction. When it is necessary to avoid dirty read anomalies, a reading
transaction should lock the revision as it would intend to write. Certainly, it is possible only if the
revision has not been previously locked by another transaction.

The isolation of optimistic transactions is naturally supported due to the fact that each
transaction proceeds with its own revision replica and thus does not affect the other concurrent
transactions. When it is necessary the results of individual transactions can be merged. Risks of
detecting conflicts and rolling back one of the concurrent transactions remain however it can often
be avoided with proper policy of work distribution among collaborators.

The consistency and the integrity in particular are not trivial requirements especially in the case
of semantically complex IFC models. The requirements can be also successfully satisfied within
adopted pessimistic and optimistic transactions. The IFChub server provides capabilities needed to
check any model revision against IFC schema rules. Moreover, these capabilities are effective
enough to control not only separate model revisions, but also every committed transaction and
thereby to guarantee that whole IFChub model DB is maintained in consistent way. These
capabilities are achieved through incremental checks of committed transactions which can be
carried out much more quickly that a full validation of the entire model. Indeed, short transactions
usually contain a relatively small number of operations which have local impact on related data.

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Therefore, typically there is no need to suffer the entire model revision to all checks. Only those
data which relate to committed transaction operations and may violate some semantic rules should
be subject to validation.

On the condition that the initial revision has been successfully validated and all the committed
transactions have been incrementally checked, it can be argued that every persistent revision is
consistent. Similar statement is true for revisions obtained by means of merging persistent
revisions. On the condition that common ancestor and two merged revisions are consistent, it can
be guaranteed that the resulting revision is also consistent. Thus, the entire IFChub model DB can
be maintained semantically consistent if the proper validation facilities are applied permanently.

6 Conclusions
Thus innovative software platform IFChub has been presented in the paper. The platform enables
IFC-driven building information to be shared concurrently among project stakeholders under
different collaboration modes and to be managed strongly in correspondence with the ACID or the
BASE transactional principles. Support of alternative transaction models enables to hold
collaboration sessions with varied levels of the data availability and the transaction concurrency. It
has been argued that in any case the consistency requirement can be successfully satisfied.

Supporting both standard file exchange and system integration via unified software interfaces,
the platform assumes a relatively easy migration path from existing single-site applications to
advanced multi-modal collaborative environments. The presented IFChub platform v1.0 has been
released and is freely available for validation and integration purposes.

References
Abadi, D., Thomson, A. (2010) The problems with ACID, and how to fix them without NoSQL. DBMS Musings,

August 31, 2010. http://dbmsmusings.blogspot.ru/2010/08/problems-with-acid-and-how-to-fix-
them.html

A360 (2015). “Autodesk A360 Collaboration for Revit”. http://www.autodesk.com/products/collaboration-
for-revit

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E. & O'Neil, P. A Critique of ANSI SQL Isolation Levels,
SIGMOD Record Conference, San Jose, CA USA, 1995, Vol. 24, No. 2, pp. 1-10.

Brewer, E. (2010) Towards Robust Distributed Systems, Proceedings of the Nineteenth Annual ACM Symposium
on Principles of Distributed Computing, July 2000, p. 7.

BIM+ (2015). “Make BIM happen”. https://www.bimplus.net
BIMsight (2015). “Improve the way you work today with Tekla BIMsight — the easiest to use construction

collaboration software”. http://www.teklabimsight.com
Cattell, R. (2010) “Scalable SQL and NoSQL data stores”. In Newsletter ACM SIGMOD, 39, 4, pp. 12-27,

December 2010.Haerder, T. & Reuter, A. Principles of transaction-oriented database recovery. ACM
Computing Surveys, Volume 15, Issue 4, December 1983, pp. 287 - 317.

Gilbert, S. & Lynch, N. (2002) “Brewer’s conjecture and the feasibility of consistent, available, and
partition-tolerant web services”, ACM SIGACT News 33, 2, pp 51-59, March 2002.

IFChub (2015). “Work smart.. collaborate”. http://www/ifchub.com
IFC Toolboxes (2015) “buildingSMART. Implementation. IFC Toolboxes”, http://www.buildingsmart-

tech.org/implementation/get-started/ifc-toolboxes
ISO 10303: 1994, Industrial automation systems and integration — Product data representation and exchange.
Jørgensen, K., Skauge J., Christiansson, P., Svidt K., Sørensen K.B., Mitchell, J. (2008) “Use of IFC Model

Servers. Modelling Collaboration Possibilities in Practice”. Technical report by Aalborg University and
Aarhus School of Architecture. http://it.civil.aau.dk/it/reports/2008_Ifc_model_server.pdf

MVD (2015) “buildingSMART. Specifications. Model View Definition Summary”,
http://www.buildingsmart-tech.org/specifications/ifc-view-definition

Saito, Y. & Shapiro, M. (2005) “Optimistic Replication”. ACM Computing Surveys, 37(1):42-81, 2005.
Semenov, V., Bazhan A. & Morozov S. (2004) Distributed STEP-compliant platform for multi-modal

collaboration in architecture, engineering and construction. Proc. of X CIB W78 Conference. Weimar,
Germany, June 02–04, 2004, pp. 318.

Shafiq, M.T., Matthews, J. & Lockley, S. (2012) Requirements for model server enabled collaborating
on building information models. Proc. of First UK Academic Conference on BIM, 5-7 September
2012, Northumbria University, Newcastle upon Tyne, UK.

