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Abstract: Over-height vehicle strikes with low bridges and tunnels are an ongoing
problem worldwide. While previous methods have used vision-based systems to
address the over-height warning problem, such methods are sensitive to wind. In this
paper, we propose a constraint-based approach to minimise the number of over-
height vehicle misclassifications due to windy conditions. The dataset includes a total
of 102 over-height vehicles recorded at frame rates of 25 and 30 fps. At this frame
rate, we analysed sampling rates to determine the sufficient number of positive
frames required to provide accurate warnings to drivers. Optical flow and KLT
feature-tracker algorithm was used to detect and track feature points of motion.
Motion captured within the region of interest was treated as a standard two-class
binary linear classification problem with 1 indicating over-height vehicle presence
and 0 indicating noise. The algorithm performed with 100% recall, 83.3% precision
and false positive rate of 8.3%.

Keywords: Bridge strike, tunnel strike, over-height vehicle, over-height vehicle
detection system, bridge strike prevention.

1 INTRODUCTION

A bridge or tunnel strike is an incidence in which a vehicle, typically a lorry or double-
decker bus, tries to pass under a bridge or tunnel that is lower than its height, subsequently
colliding with the structure (Nguyen and Brilakis 2016a). Bridge and tunnel strikes are
recurrent incidents, often costing thousands of pounds in repairs and causing hours of
delays; this disruption that can be felt across various road and rail networks. When a strike
occurs, the event can affect five key groups: these include owner/operators of roadways,
railways, and bridges/tunnels, as well as both vehicle drivers and the wider public.

Current state of practice in strike prevention can be split into three categories, each
with limitations: passive (effective only 10-20% of the time), sacrificial (costly) and active
systems (also costly). Although expensive, the active laser-beam systems are the most
effective. However, due to the high costs associated with pole erection and installation
(£60k+ per pole), adoption has been limited (Dai et al. 2015). Particularly in severe wind,
active systems are more prone to false positive warnings.

In this paper, we address the wind sensitivity issue by using a constraint-based
approach to minimise the number of over-height (OH) vehicle misclassifications resulting
from windy camera conditions. Our approach involves understanding the behaviour of
moving vehicles and wind motion in order to prevent misclassifications and resultant
erroneous warnings to drivers.
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2 BACKGROUND

Computer vision-based OH vehicle detection is a relatively new area of research. It has
grown in popularity as infrastructure owners have increasingly sought more affordable
methods of strike prevention.

2.1 Computer Vision-Based Methods

One of the earliest computer vison-based solutions to the OH problem involves height
estimation of moving objects. This approach uses vanishing lines to estimate vehicle height
(Shao, Zhou, and Chellappa 2010; Dai et al. 2015). Although these methods have yielded
favourable results, they rely on the sometimes problematic assumption that vehicles are
visible in the images. On a multi-lane roadway, this is often untenable, given the number
of vehicle occlusions in a typical scene.

Nguyen et al. (2016b) expand on the height estimation concept by introducing a
threshold line approach which mimics the behaviour of the active laser-beam method. In
Fig. 1, under ideal sunny yet minor-windy weather conditions, the distinction between OH
vehicle, wind and other noise is distinguishable by the average number of feature points
detected. When the number of feature points are high, we expect to see motion consistent
with a vehicle passing through the frame; otherwise, any detected features points can be
classified as non-vehicle movement. While the threshold line approach performs ideally
in sunny weather conditions, the performance drops by nearly 31.0% in windy weather.
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Figure 1: The plot show the number of feature points detected over time in ideal,
sunny, minor windy conditions.

2.2 Related Methods

In an OH context, although the camera is intended to be static and fastened to a secure
bracket, severe wind can still cause motion in the system, due to the slenderness of the
mounting pole and its height relative to the road plane. This problem can be addressed
using feature- or intensity-based methods.

2.2.1 Feature-based methods

Feature-based methods make use of distinguishable attributes such as edges (Canny 1986)
and corners (Harris and Stephens 1988) to locate areas of interest applicable for OH
detection. Corners are common features to track, due to their distinctive edges and
significant change in intensity values in all directions. Corners can be expressed as
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E(u,v) = Zx’y wl, YI(x +u,y +v) —I(x,y)]? (1)

representing the window function and difference in intensity shifts. For distinctive patches,
the values are larger representing a great change in intensity i.e. corners of moving objects.

2.2.2 Intensity-based methods

Optical flow is a widely-used intensity-based method which estimates the motion of image
velocities or discrete image displacements between two image frames at frames I and [; 4
in combination with the Kanade-Lucas-Tomasi (KLT) feature-tracker algorithm. The
optical flow estimation can be computed for 2D cases as the intensity I(x, y, t) is shifted
by u, v and y between the two image frames using a brightness constancy constraint given
as

[(x,y,t) = I(x+u,y+v,t+1) (2)

where the x and y components represent the velocity of I(x, y, t).

2.3 Motivation

While there exist previous methods that use computer vison-based systems to address the
OH problem, they are sensitive to wind. In Fig.2 (a) and (b), where wind is present, the
feature points are indistinguishable windy camera movements resulting in false positive
detections. Here, we extend the research of Nguyen et al. (2017) to address the wind
sensitivity issue. We do this by understanding the behaviour of OH vehicles and windy
weather conditions, with the aim of minimising misclassification due to windy conditions.
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Figure 2: Detected features points in (a) cloudy and windy and (b) rainy and windy
weather conditions.
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3 PROPOSED SOLUTION

3.1 Overall Framework
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Figure 3: overall framework of over-height vehicle detection system to account for
wind sensitivity

The framework shown in Fig. 3 extends Nguyen et. al (2017). The extension addresses the
wind sensitivity issue by identifying common characteristics of OH vehicles and wind
behaviours. We assume that OH vehicles behaviours are: (1) over a specific height relative
to the road plane, (2) travelling in a specific direction (easterly direction at distance d from
the camera position) and (3) travelling at a constant speed. We assume the vehicle is not
decelerating and/or stationary (parked) in front of the camera view. We can apply these
assumptions to a windy scenario. In this scenario, we assume that the camera will endure
constant swaying, and that this motion will occur over a significant number of frames (5+)
rather than forming an isolated event (1 or 2 frames). Any motion captured within the
region of interest is analysed, and can be treated as a binary linear classification problem
such that

1, overheight vehicle
0,noise

Trigger Warning System = { 3)

1=0OH vehicle and 2=noise (caused by wind or camera movement).

3.1.1 The algorithm

The algorithm adds to the assumptions stated in Section 3.1 with a new control variable to
analyse the direction of movement of features. This control variable analyses the direction
of flow movement and scores each feature-point. The algorithm is initialised when the
flagged frame is passed through into the wind analysis check. The sampling rate
information is used as input to activate the KLT feature-tracker detection algorithm. Any
motion passing through the region of interest is detected and tracked. Each point is tracked
over five consecutive frames and analysed with reference to its neighbours to determine
whether the flow is constant and moving in a positive direction. If the flow is constant i.e.
monotonically increasing in the horizontal pixel dimension, then a warning is displayed
on the OH sign. If the motion is inconsistent and disconnected, the instances are classified
as noise, and the process starts over.
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Step 1 (Wind analysis check): The flagged image is initialised using the input
information of the sampling rate. ‘Sampling rate’ refers to the processed interval of frames
in a given dataset. For example, if a video is recorded at 25 frames per second, the
algorithm can be set to analyse every 1, 5, 10, 30 frames etc., in order to minimise the
amount of processing time required. If a vehicle is travelling at 30 mph at a recorded frame
rate of 25 fps, we expect the OH vehicle to be captured in 90 + 5 frames. If we were to
sample once every 5 frames, we would expect a positive occurrence 19 times for the same
vehicle, equating to 19 positive warnings. This is excessive; only one warning is required
for every OH classification, and so the sampling rate needs to be analysed.

Step 2: In this step, we use optical flow to find the physical movement of the 2D
projection of the feature points relative to the 2D displacement of pixel patches on the
image plane. The initial video frame is a 2D grayscale image, [; and the feature points are
detected using corresponding interest points between a pair of images using local
neighbourhoods and the corner Harris algorithm. The algorithm finds the corners and
extracts neighbourhood features. The neighbourhood features are matched and locations
of the corresponding feature points are retrieved for each consecutive image. This can be
expressed as

(IiJ Ii+1' Ii+2' Ii+3' Ii+4-' ] Ii+N)
where N < number of positive frames.

Step 3: The feature points are initialised and tracked to specify the initial point and
video frame location in [X y] coordinates. The point tracker tracks a set of points using the
KLT feature-tracking algorithm from one frame to the next. A block size is initiated to
specify the size of the neighbourhood represented by a two-component vector
[height, width] around each point being tracked. The neighbourhood corresponds to the
spatial matrix area and the block size is set to a minimum to decrease computation time.
The output points are an N-by-2 array of [x y] coordinates that correspond to the new
point locations in the subsequent frame. The validity of the points is scored using a
confidence scoring technique for each point between 0 (poor) and 1 (perfect). The
scores are a function of the sum of squared differences between the previous and new
neighbourhoods. The values correspond to the degree of similarity between the
neighbourhood around the previous and new location. Since motion projects to nearby
points in the image, we expect spatial coherence and constant feature flow along the x-
horizontal dimension of the image. We hypothesize that this modified framework will
minimise false positive classifications, and hence provide accurate warnings to drivers.

4 EXPERIMENTS & RESULTS

This section provides details of the data collection, camera specifications and methods used
in the experiment, as well as classification accuracy results. The implementation was
conducted on 30-50 mph speed limit roadways, which are typical where low bridges exist.
The dataset consisted of video involving obstructions such as moving trees or bushes, and
building fagades with potential background movement, as shown in Fig. 4.
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Figure 4: Data Collection Examples

The camera specifications used for the experiment was a Sony a7R ii 42 MP camera
capturing a total of 88.6 mins of windy weather video footage @ 25 and 30 fps with a
resolution of 1920 x 1080. Manual swaying of the pole was implemented at times
throughout the data collection, in order to simulate wind movement. In total, 102 OH
vehicles were recorded, yielding 132,900 positive frame instances of OH vehicles. The data
was processed using MATLAB R2016a Computer Vision Toolbox on an Intel Core i7-4790.
The camera was mounted on a fixed tripod pole where the Oyaw was at 90° and Opitch at
10°. Although the typical UK low bridge is considered to be 5.03m (Department of
Transport), in this experiment, we set the camera height between 2.5m and 3.2m to
evaluate the flows of the average tall vehicle. We chose to lower the height of the camera
to allow for a larger data set.

OH vehicle detection requires a sufficient number of frames to accurately detect the
vehicle. The purpose is to distinguish between true OH presence and movement resulting
from wind. If the frame and sampling rates are lowered, there is a higher probability of
false negatives, whereas at higher rates we have excess frames which increases processing
and computing costs. Therefore, an evaluation of the frame and sampling rates is required
to determine the optimal parameters.

The experiment was divided into two parts, involving videos recorded at 25 fps and at
30fps. For each frame rate, we evaluated the system at 5-frame interval sampling rates i.e.
every 1, 5, 10, 15, 20, 25 30 frames to determine the optimal sampling rate with sufficient
accuracy. Within each sampling rate, we determined the upper and lower limits of the
number of positive frames at each frame rate. The number of positive frames is important,
as the trigger is set to warn the driver when five consecutive frames have positive motion.
Five consecutive frames were chosen as this provided sufficient positive frames to track
should the features points fail to track successfully in the initial frames. Optical flow was
used to detect and track the motion features using the Harris corner detection and KLT
feature-tracker algorithm. A confidence score was assigned to each point to assess validity.

4.1 Results

As shown in Table 1, frame rates used were 25 and 30 fps. If we were to take the dataset
recorded at 25 fps with a sample rate of every 1 frame, on average, we would expect to
find 49.5 positive frames of OH vehicle instances ranging from an upper limit of 62, lower
limit of 37 and average of 49.5 positive frames. This resulted in an average of 8.5 warnings
per OH occurrence. Although the algorithm was able to recall positive instances, the
multiple warnings decreased the precision to 85.9% compared to a ground truth of 9.9

74 | Proceedings JC3, July 2017 | Heraklion, Greece



Bella Nguyen and loannis Brilakis

positive warnings. The values in grey” did not meet the minimum required number of
positive frames for consecutive flow analysis and were therefore removed from the dataset.
The eliminated values included both 25 and 30 fps video sampled every 15, 20, 25, and 30
frames. The ideal parameters were found to be 25 fps at a sample rate of every 10 frames.
The average number of positive frames with these parameters is 12, with an average
warning of 2. The performance of the algorithm is 83.3%.

Table 1: Results recorded at 25 and 30 fps, sampled at 5-frame intervals

30 - 50 mph roadways, dataset: 102 over-height vehicles

Sampling # of positive warning to driver metrics
rate @ £
rames
every x
frames oo, avg upp GROUND avg #of recall precision false
TRUTH:  warnings positive
issued to
# of each
possible OHV
warnings
per OHV
1 frame 37 495 62 9.9 8.5 100% 85.9% 11.7%
& Sframes 11 215 32 43 3.6 100%  83.7% 8.5%
S8 10 frames 7 12 17 2.4 2 100%  833%  83%
®
15 frames 3 75 12 *
1 frame 43 57 71 114 9.6 100% 84.2% 13.5%
" 5 frames 17 28 39 5.6 4.6 100% 82.1% 10.0%
=3
Lé 10 frames 9 16 23 3.2 2.6 100% 81.3% 11.9%
®
15 frames 6 7.3 8.5 2.2 0.9 100% 40.9% 20.0%
20 frames 4 6 8 *

*Did not meet minimum required number of positive frames

5 DIiISCUSSION & CONCLUSIONS

This experiment recorded a total of 102 OH vehicles at frame rates of 25 and 30 fps in
order to minimise misclassifications due to wind. At these frame rates, we compared
sample rates to determine the sufficient number of positive frames to provide accurate
warnings to drivers. The results showed that, for 30 - 50 mph roadways, the optimal frame
/ sample rates are 25 fps sampled every 10 frames. At this optimal setting, the average
number of positive frames is 12. If the trigger is set at five consecutive frames, there is a
likelihood of at least one warning to the OH driver, while minimizing the number of
multiple warnings. As a result, the computing and processing speeds are minimally
impaired. The performance of the algorithm is 83.3% and false positive rate of 8.3%.
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The precision of the algorithm is affected by the number of multiple warnings given
for positive OH instances. Therefore, the ideal number to target is 1 warning per OH
vehicle with an allowable tolerance of +1. Sampling rates above 15 frames were discarded,
as they did not yield the minimum required number of positive frames for processing. If
the trigger is set at a five-consecutive frame minimum, and the lower limit of positive
frames is 3, this means that there is a shortage of sufficient frames for processing to meet
the five-consecutive frame minimum. Therefore, these sampling rates were not considered
further. In addition, although at 30 fps with a sampling rate of every 15 frames the lower
limit of the five-consecutive frame minimum was met, this configuration showed poor
algorithm performance. This configuration was not able to return at least 1 warning due
to the low number of frames, which resulted in poor tracking; more frames are required
for sufficient processing. The algorithm was able to minimise the number of
misclassifications due to wind by using the behaviours of OH vehicles and windy
conditions. The algorithm was able to recall 100% of true positives, and to differentiate
motion resulting from OH vehicles from noise (i.e. wind). However, as a result multiple
warnings may be given to a single OH vehicle. Future work will examine further
constraints to eliminate these multiple warnings.
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