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DETECTING PAVEMENT PATCHES UTILIZING
SMARTPHONES TECHNOLOGY AND VEHICLES

Charalambos Kyriakou! and Symeon E. Christodoulou?

Abstract: Presented herein is a study on the utilization of low-cost technology for
detection of roadway pavement anomalies (patches and potholes), by use of sensors
on smartphones and of automobiles’ on-board diagnostic (OBD-II) devices for the
collection and analysis of vibration-related data while vehicles are in movement. The
mobile data collection kit consists of a triaxial accelerometer, a gyroscope and a global
positioning sensor. The smartphone-based data collection is complimented with
robust regression analysis and a bagged-trees classification model for the
classification of pavement anomalies. The proposed system is readily available, low-
cost and adequately accurate, and can be utilized in crowd-sourced applications for
pavement monitoring. Further, the proposed methodology has been field-tested,
exhibiting detection accuracy levels higher than 90% for pavement patches, and it is
currently expanded to include larger datasets and a bigger number of pavement defect

types.
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1 INTRODUCTION

One of the most important indicators for road quality is the pavement surface condition,
which is determined by the anomalies in the pavement surface that have an effect on the
ride quality of a vehicle. Nowadays, pavement management agencies evaluate pavement
surface quality almost once per year, because current practices are expensive and laborious.
Distributed mobile sensing utilizing smartphones could provide a viable solution to
pavement assessment at a much lower cost, as continuous monitoring of pavement
performance will significantly reduce risks and provide an adequate volume of timely data
to enable accurate maintenance forecasting.

As a result of the rapid and intense development and usage of smartphones in current
years, smartphone technology has gained noteworthy consideration within the
transportation, infrastructure, and automotive industries. Modern smartphones come with
a range of built-in sensors, such as accelerometer, gyroscope and GPS sensors. Further,
OBD Bluetooth devices (ELM 327 Bluetooth Car Diagnostic Scanner) coupled with
smartphone applications make possible the real-time monitoring of, among others, the
GPS latitude and longitude, forward and lateral acceleration, vehicle roll and vehicle pitch.

The vision for pavement anomaly detection by use of smartphone sensors, OBD
devices and vehicles data is set in parallel with the idea that such technology can be applied
in geographic information systems (GIS)-based pavement management systems (PMS). A
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sufficient number of vehicles collecting this crowd-sourced data can then be used to
generate a georeferenced event at points where vehicles encounter abnormal behaviour
on a pavement network. Even though multiple vehicles might present conflicting data
regarding pavement surface quality, the joint knowledge fed by sensors provides a precise
model of the pavement surface condition in relation to how an average driver experiences
the roadway network condition.

In addition to this short introduction, a literature review section presents a framework
of past and ongoing work related to the detection of pavement anomalies by use of
smartphones. A section on methodology setup presents the build-up data collection system
and methods, while the results and discussion section includes the processes and tools used
to classify the data. The paper concludes with key findings and with an outline on future
research directions.

2 LITERATURE REVIEW

De Zoysa et al. (2007) proposed a public transport system called “BusNet” to monitor
pavement surface condition by adding acceleration sensors on top of public buses. The
acceleration sensors identify potholes through changes in the vertical acceleration and
determine the car speed modification using the horizontal acceleration. Erikson et al. (2008)
used seven taxis running in the Boston area and developed a mobile sensor system called
“Pothole Patrol”. Each taxi needed a computer running the Linux operating system, a Wi-
Fi card for transmitting collected data, an external GPS and a 3-axis accelerometer.
Strazdins et al. (2011) proposed a method requiring an Android smartphone with GPS, 3-
axis accelerometer and a communication channel (cellular or Wi-Fi). The system consists
of two application components, one for the Android device and one for a data server.
Vittorio et al. (2014) proposed a system based on a simple application for smartphones that
uses a GPS receiver and a three-axis accelerometer to collect acceleration data stemming
from a vehicle’s motion on anomalous roadways. The high-energy events (anomalies) are
identified by monitoring and measuring the vertical acceleration impulse. Seraj et al. (2014)
proposed a system that detects road anomalies using mobile equipped with inertial
accelerometers and gyroscopes sensors. They applied a method to remove the effects of
speed, slopes and drifts from sensor signals. For future work, they aim to apply this method
for road anomalies detection in participatory sensing, using clustering by geo-coordinates.
Alessandroni et al. (2014) described a system which included a combination of a custom
mobile application and a georeferenced database system. The roughness values computed
and stored into a back-end geographic information system enable visualization of road
conditions. This proposed approach introduced an integrated system for monitoring
applications in a scalable, crowdsourcing collaborative sensing environment. Mohamed et
al. (2015) proposed a road condition monitoring system that detected such as speed bumps.
They suggested the gyroscope around gravity rotation as the primary indicator for road
anomalies, in addition to the accelerometer sensor, in order to avoid false-positive
indications; especially when there is a sudden stop or sudden change in motion
acceleration. Jang et al. (2016) proposed an innovative method to collect up-to-date data
about potholes and sunken manholes by using a mobile data collection kit mounted on
vehicles. At a back-end server, a street defect algorithm which based on a supervised
machine learning technique enhances the performance of the proposed monitoring system
by integrating data collected from multiple sensor-equipped vehicles. The above systems,
despite hardware differences in terms of GPS accuracy and accelerometer sampling rate
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and noise, show that pothole detection by use of smartphones sensors on moving vehicles
is possible.

Bridgelall (2015) developed theoretical precision bounds for a ride index called the
road impact factor and demonstrated its relationship with vehicle suspension parameter
variances. Lately, the Jaguar Land Rover automaker make known that is testing a new
connected vehicle technology which permits a vehicle to spot hazardous potholes in the
roadway and then distribute this data in real time with other Jaquar Land Rover vehicles
(Nick O'Donnell 2015). Kyriakou et al. (2016, 2017) explored the use of smartphone sensor
technology and of data collected while vehicles were in movement, for the detection and
classification of pavement surfaces anomalies. Their proposed system architecture, which
was complimented with artificial neural network techniques and bagged trees for
classifying detected roadway anomalies, was trained, validated and tested against three
types of common roadway anomalies exhibiting above 90% accuracy rate.

3 METHODOLOGICAL SETUP

The paper focusses on the detection of pavement patches (Figure 2), albeit being part of a
larger effort on the detection of vibration-inducing pavement anomalies, as documented
in Kyriakou et al. (2016). The data used in this study is collected from six different roads
(of 5Km total distance and 8 different pavement patch types). Data of pavement patches is
collected in-situ by use of a car equipped with a smartphone (mounted on the car’s
windshield) and with an OBD-II reader attached to the car. The data, collected at intervals
of 0.1 seconds, included a total of 31 uni-dimensional (e.g. X, Y, Z accelerations, speed,
etc.) and two-dimensional indicators (e.g. the smartphone’s roll and pitch values). The
smartphone was also fitted with the DashCommand application for recording sensor
readings of taken data. Vehicle system data is transmitted through the OBD-II reader to
the smartphone device and then transferred for either processing or storing, via a digital
cellular connection or other means. At the back-end server, a defect detection algorithm
based on random forests (bagged trees classification model) enhances the performance of
the proposed monitoring system, by integrating data collected from multiple sensors and
deducing knowledge from these participatory sensors.

(a) (b) ()
Figure 2: Pavement patches examined for detection.

Mathematically, the proposed method is based on rigid-body dynamics. Any three-
dimensional rotation can be described as a sequence of yaw, pitch and roll rotations (Figure
3). Pitch is defined as counter clockwise rotation of 6, about the y-axis. Roll is defined
as counter clockwise rotation of 8,,;; about the x-axis. Yaw is defined as counter clockwise
rotation of 6,4, about the z-axis. The rotation matrices for pitch, roll and yaw give
equations 1,2 and 3 respectively.
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Figure 3: Yaw, pitch and roll rotations.
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The smartphone’s roll and pitch values (Figure 4a) can be associated with the host car’s
roll and pitch values (Figure 4b). In essence, the roll metric refers to a car’s acceleration
variation between its left and right front wheels, while the pitch metric refers to a car’s
acceleration variation between its front and rear wheels. Concurrently, the roll and pitch
values define the way in which the host car is off balance (sideways and front/back).

(a) (b)

Figure 4: Smartphone’s (a) roll and pitch directions and (b) relation to car’s
wheels’ differential.
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Robust regression analysis is used to detect the most significant variables and the
underlying regression equation. Tukey’s Biweight robust influence function was used. It
is an M-Estimator that uses iteratively reweighted least squares. This M-estimator
completely downweighs observations with large outliers until their weight is set to zero.
It provides protection against heavy-tailed error distributions. The regression analysis
outputs are shown below, in Figure 5 and Table 1, listing the most important statistical
variables (with p-values <0.05).

Table 1: Most important variables according to robust regression.

Variable Variable Name Variable Description
VAR _1 Aux.Accel. Forward (Gs) Forward Acceleration
VAR 2 Aux.Accel Lateral (Gs) Lateral Acceleration
VAR _3 Aux.Rotation.Pitch (A°) Vehicle Pitch
VAR 4 Aux Rotation.Roll (A°) Vehicle Roll

Robust regression determines the coefficients Pi of each factor xi, and the residual error
¢j for each observation j, in the equation

yj = B0 + Blx1j + B2x2j + - + Bpxpj + €j, 4)

which is required to relate the dependent variable, yi, to the independent variables xi. The

independent variables are the thirty-one parameters talk about above, and the dependent

variable relates to the classification status of the pavement (‘1’ for no defect, 2’ for

pavement patches). The subscript j’ denotes the observation (row) number. Robust

regression was preferred instead of other regression analysis because it examines highly

contaminated data by detecting outliers from both dependent and independent variables.
Run Summary Report

Item Value Rows Value
Dependent Variable C7 Number Processed 1583
Number Ind. Variables 10 Number Used in Estimation 1583
Weight Variable None Number Filtered Out 0
Robust Method Tukey's Biweight Number with X's Missing 0
Tuning Constant 4.685 Number with Weight Missing 0
MAD Scale Factor D.6745 Number with Y Missing 0

Sum of Robust Weights 1231.013
Run Information Value
Iterations 30

Max % Change in any Coef  0.067
R= after Robust Weighting 0.0993

S using MAD 0.00
S using MSE 0.00
Completion Status Normal Completion

Estimated Equation

C7 =

1.04207970696665 - 0.540982600787313 * AUX_ACCEL_FORWARD_Gs + 0.0103553795865275 *
AUX_ROTATION_PITCH_A_ - 0.00443716027684323 * AUX _ROTATION_ROLL_A_ + 0.493609495820244 *
AUX_ACCEL FORWARD_Gs*AUX_ACCEL_FORWARD_Gs - 0.0115693003594446 *
AUX_ACCEL_FORWARD_Gs™AUX_ROTATION_PITCH_A_ - 0.0523867849404161 *

AUX ACCEL FORWARD Gs*AUX ROTATION ROLL A -0.130901743660689 *

AUX_ACCEL _LATERAL_ Gs*AUX_ROTATION_ROLL_A_ - 3.46584911775038E-05 *
AUX_ROTATION_PITCH_A_"AUX_ROTATION_PITCH_A_ + 0.00122836523185265 *
AUX_ROTATION_PITCH_A_"AUX_ROTATION_ROLL_A_ - 0.00157108064468633 *

AUX_ROTATION_ROLL A *AUX_ROTATION ROLL_A

Figure 5: Robust regression summary
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4 RESULTS AND DISCUSSION

The collected raw data exposes the complexity of the detection problem, as variables such
as the vehicle pitch expected to highlight roadway anomalies are not as conclusive as
originally thought. For that aim, the datasets are then fed into classification models. With
the purpose of classifying and validating the data, an evaluation comparison was
performed between various supervised learning algorithms for multiclass problems, to test
their performance, including decision trees using various classifiers, discriminant analysis,
support vector machines, logistic regression, nearest neighbours, and ensemble
classification.

Supervised machine learning was performed by feeding a known set of predictors data
(known pavement condition data) and known responses to the data (known pavement
condition category) into classification models. The classification model predictors are the
parameters listed in Table 1, while the responses are the values of ‘1’ for no defect and 2’
for pavement patches. The classification model architecture (shown in Figure 7) was
implemented in MATLAB.

Training/Validating Phase Prediction Phase

|

: New (Forward

1 Acceleration, Lateral

: Acceleration, Vehicle Roll

Known (Pavement
Patches)

Known (Forward

1l
Acceleration, Lateral Classification Model : : Classification Model New (Pavement
Acceleration, Vehicle Roll Bagged Trees (I Bagged Trees Patches)
and Vehicle Pitch) values : :
b e e e e e e e e m o T -

Figure 7: Classification models' architecture

Upon evaluating the various models against their performance on a given dataset and
comparing the resulting cross-validation errors of each method, the best model for the
studied problem and dataset was chosen to be the bagged trees. The dataset in study
contained approximately 2000 data, of which 25 percent was held out for cross validation
purposes. Bagged trees procedure is simple: (1) takes a sample from the dataset, (2) fits the
tree to this data set, (3) repeat steps 1 and 2 many times (typically 50-1000), and (4) makes
predictions for new data using each of the fitted models and average the predictions.
Bagged trees use Breiman's 'random forest' algorithm. ‘Random forests are a combination
of tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest. The generalization
error for forests converges a.s. to a limit as the number of trees in the forest becomes large.’
(Breiman 2001).

As shown in Figure 8, the bagged trees classify pavement patches (target classes 2’)
while also distinguishing the ‘no defect’ condition (target class ‘1’). For each pavement
surface anomaly, data is used for training, for validating and for predicting the bagged
trees, with an outline of the obtained classification results presented in (Table 3).
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Table 2: Bagged Trees training, validation and prediction statistics for the various
roadway anomaly cases examined

Classifier Type Accuracy (%)
Bagged Trees Train 98
Bagged Trees Validation 100
Bagged Trees Prediction 100

Classifier Type Accuracy (%)

Model 1
1 2% 2%
2
2
7 < Predi True False
redictad class Positive Negative
Rate Rate

Figure 8: Bagged Trees confusion matrices.

5 CONCLUSIONS AND FUTURE WORK

Pavement agencies can enrich the condition and operation of their roadway networks by
putting into practice a PMS that uses smartphones and OBD devices. The paper puts
forward a study on the use of smartphones and vehicular data for the detection of
pavement patches by applying robust regression analysis and bagged trees classification
models. The applied system is instantly available, low-cost and adequately accurate, and
can be utilized in crowd-sourced applications. The presented methodology confirms the
detection of pavement patches, exhibiting high detection accuracy levels. In future
research, GPS data refinement methods will be implemented to improve the accuracy of
GPS positioning data, which might affect the results of the classification analysis. Further,
ongoing work investigates the effects of vehicle type and of car suspension condition on
the accuracy of detection, and how the accuracy can be improved using crowdsourced data.
Ongoing work includes the development of a spatial decision support system (DSS) for
pavement surface condition-assessment mapping. The outcome of the bagged trees
analysis and the subsequent pavement surface condition assessment score will be mapped
spatially, pointing out the areas of concern and in need of rehabilitation actions.
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