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Abstract

Value at risk is a convenient and popular risk meament tool. It represents the maximum potential
loss on a specific portfolio of financial assetgeni a specific time horizon and a confidence irgkrv
Principally value at risk is used in finance foskimanagement, financial reporting and capital
requirement. In direct real estate, the calculatibthis risk measurement is still rare even isinow
common to compute and disclose it in numerous dikkfs of finance. Indeed nowadays, financial
institutions are facing the important task of estiimg and controlling their exposure to market risk
following a scope of new regulations such as BHs8asel 1ll, NAIC or Solvency Il. In this context
financial institutions use internal models for e&tting their market risk. The purpose of this pdper
to investigate the possibility to use Cornish-Fisegpansion to assess real estate value at risk. We
show how Cornish-Fisher approximation can quickliyegmore accurate measurements than
traditional methodologies. In addition, practiticnecan find here a methodology to assess quickly
value at risk without too many loss of relevancye da normal hypothesis which is relaxed in our
proposal.

After a review of literature on value at risk arfdtlee existing methodologies, the paper describes t
Cornish-Fisher expansion, the assumptions requoedpply it and how the expansion is used to
compute value at risk. Then, we apply the propasedel to a UK dataset index and compare the
results obtained with those obtained with Gausatsumption.

KEYWORDS: Value at Risk, Risk Measurements, Real Estaten€maCornish-Fisher Expansion,
Risk Analysis, Risk Management



Introduction
a) Definition of VaR

Risk measurements have hugely changed since Ma&zk@852) developed his theory in the
50’'s. Standard deviation was then the risk measeménof an efficient portfolio. However this
measurement was not relevant for one security dnbjeed, facing a unique security, the risk is
computed using the covariance between this secamiythe market. Indeed, the standard deviation of
a security is composed of risk that can be mitiddig diversification and by risk that cannot be
diversified. Yet, only the risk that cannot be darBed might be remunerated. The risk theories tha
have followed the one of Markowitz have mainly beencentrated to the factors that determine the

risk of a security and to the capital markets éiilm. In fact, when considering a portfolio

2
composed ofN securities, Markowitz model requires the estimafeN variances and” =N
2

covariances. WhemN becomes large, the estimation of the variancest@mvee matrix becomes
arduous and the possibilities of errors increasielwtan lead to misleading decision.

During the 60's, Sharpe (1964) developed the Cbhftaet Pricing Model, a mono-factor model that
considers the covariance between the security lmantarket as the only one risk factor. This risk is
measured by the betd)(@and is called the systematic risk. It cannot begatied by diversification. On
the contrary, the specific risk (the non-systematie), inherent to the company, can be mitigated by
diversification.

Then the Asset Pricing Theory was developed by Rb&86) in the 70’s. This model is a multifactor
model and identifies the multidimensional effecttloé risk. However, one of the weaknesses of this
model is that it does not explain the factors thetermine the return of the security. Value at dik

not appear before the late 80's. In 1987, the stoakket crashed and the trigger event for a nekv ris
measurement. This was the first major financiadisrwhere practitioners as well as academics were
afraid about global bankruptcy of the entire systdime crash was so improbable to happen given
standard statistical models that all the quant$ dagbt and began to question the models. Many
academics claimed that the crisis were recurrind) @sk for reconsidering the models. Taking into
account extreme event had become obvious. Thealimits of the traditional risk measurement were
recognized and measuring the risk of fall of thieieaf the assets was becoming urgent.

The necessity to rely on a risk measurement thasiders the entire distribution of return of a
portfolio was obvious. In this context, throughtiug 90’s, a new risk measurement was built up: the

Value at Risk with its acronyrvaR'. VaR was developed and then adopted by practisonad

¥ In our context and for all the paper, VaR is asstino be computed for a static portfolio and withchange in its structure, no trading or
arbitrage.



regulators. Jorion (2006) define VaR as followsaRvis a method of assessing risk that uses standard
statistical techniques used routinely in other mécdl fields. Loosely, VaR summarizes the worskloo
over a target horizon that will not be exceedechwaitgiven level of confidence”. In financial risk
management, VaR is a measure of the risk of losa epecific portfolio of financial assets (among
which real estate asset). For a given portfolimbpbility and time horizon, VaR is defined as a
threshold value such that the probability that irerk-to-market loss on the portfolio over the given
time horizon exceeds this value (assuming no toadinthe portfolio) is the given probability level.
On a portfolio value at time t,\for a time horizon of one period of time and &thresholdy, this

can be translated as:
0t, P, [(Vt+1 -V ) +VaR , < 0:' =a

Or as well by considering a positidtwith its cumulative distribution functiofRy andq,(X) the lower

fractile by:

VaR, (X) =-sup{x |F, &)<a}=-q, X
Unlike the most widely adopted convention in theeriture, some chose to count positively an
effective loss:

VaR, (X) =inf {x| F, (x) > a}

This measurement is then become more and more gropulvalue the risk of institutional and
individual portfolio. In particular, Value-at-Risks seen as an easy to understand method for
guantifying market risk. As of today, VaR is used tmany regulators as the risk measurement
reference, among others Basel |, Basel Il, Solvéhagd NAIC.

The worldwide adoption of the Basel Il Accord in9®9and near completion today (Basel llI
must be applied for 2019) gave further impulsiorV&iR. Basle committee has required that banks
compute periodically their VaR and maintain suéii capital to pay the eventual losses projected by
VaR. Unfortunately, there is not one measure of \@&Rause volatility, which is a fundamental
component of VaR, is latent. Therefore, banks nusst many VaR models to compute the range of
their prospective losses. These computations nhigltomplex because the distribution of returna is i
general not known. Nowadays, the main uses of MaRfirance are — among others — risk
management, risk analysis, financial control, firiahreporting and computing regulatory capital.
More recently, methodologies and risk measurenmrh as stress testing, expected shortfall, ahd tai
value at risk have become more popular becauseftierg particularly on the expected severity of
failure. VaR is thus slowly replacing standard @#wein or volatility as the most widely used measure
of risk. This has happened because of the need $amgle risk measure for the calculation of cdpita
adequacy limits for financial institutions suchkesks or insurers. Value at Risk allows for reguriat

and banks management to put a single number oadefimned worst-case scenario (at a certain level



of confidence). Nevertheless, VaR is not the maxinhoss one may experience. It is in fact the lowest
loss at this threshold. Even if it is exact in theory, it works only farspecific confidence level. There

is always a higher level of loss for a lower coafide level.

The three main traditional methods of calculatirdue at Risk are:

1. The historical method

2. The variance-covariance method

3. The Monte Carlo method
The historical method involves taking empirical firand loss history and ordering it, then assuming
that history will repeat itself. The main benefittbe Historical method is that it does not requiny
assumptions about the nature of the distributiometdirns. The major drawback is that this method
implicitly assumes that the shape of future retwmiisbe the same as those of the past. To malee thi
approach statistically reliable, one need to enshaie sufficient number of observations is avagabl
and that they are representative of all possibégest of the portfolio. Data must incorporate
observations from both bull and bear markets. &b estate area, since we rarely have enough history
(and more generally in almost all non listed markiee empirical method is not considered as aceurat
as either the parametric or simulation method.
The variance-covariance method (sometimes namexdnedric method) requires an assumption to be
made about the statistical distribution (normalg-tmrmal etc.) from which the data is drawn.
Parametric approaches are comparable to fittingesuthrough the data and then reading off the VaR
from the fitted curve (unfortunately, for many sigicated models, analytical solutions do not éxist
The parametric VaR is one of the more popular nithdhe attraction of parametric or analytic VaR
is that relatively little information is neededd¢ompute it. The main weakness is that the disiobut
chosen may not accurately reflect all possiblesstaf the market and may under or overestimate the
risk. This problem is particularly acute when usifaR to assess the risk of asymmetric distributions
(in particular portfolio containing options). Inucases the higher statistical moments of skewness
and kurtosis which contribute to more extreme Ilssdat tails) need to be taken into account. So
although some level of statistical sophisticatisnnecessary, parametric methods exist for a wide
variety of distributions.
The Monte-Carlo approach has become more and nogrelgr in recent years. Mainly, this is due to
the improvement of computer and software power. tddarlo methods rely on repeated random
generation from a probability distribution of theputs that are then used to compute the resulés of
model. Simulation based VaR generates thousandatieduscenarios drawn either from a parametric
assumption about the shape of the distributionyorebsampling the empirical history and generating
enough data to be statistically significant. Thdu®aat Risk is deducted by reading the desired

percentile as in the historic calculation method.
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Despite its popularity among practitioners, requisitbut also academics, VaR is subject to many
criticisms. It has been controversial since it nbf®m trading desks into the public eye in 1994. A
common complaint among academics is that VaR is swiadditive. In fact, VaR does not
systematically satisfy the property of convexityilastrated by Danielson and al. (2005): the VdR o
combined portfolio can be larger than the sum ef\WhR of its components. This was demonstrated
by Artzner and al. (1999), excepting in some speeiaes (among which the normal distribution), VaR
does not satisfy the subadditivity requirement f@athematical coherence. Also, assessing plausible
losses is difficult using VaR theory. Losses canel&remely large and sometimes impossible to
determine once one gets beyond the VaR point. Brgmactitioner point of view, VaR is more seen as
the level of losses at which one stop trying togma what can happen next. Other academics such as
Longin (2005) suggest taking an interest in extrawent (and therefore extreme value theory) only
when appraising extreme risk such as Value at Riskeal estate, the extreme value theory in the

context of value at risk for listed real estate basn studied by Liow (2008).

b) Literature review

VaR has been the subject of a wide work among aaiade All the methods that have been
proposed to compute VaR or a quantile of the digtion have been subject to academics research
quickly after the Value at Risk set-up in 1994.darticular, the researchers and academics from
RiskMetrics have published a large number of papers/alue at Risk assessment. Among them
Monte-Carlo simulation: Pritsker (1996); Johnsoansformations: Zangari (1996a), Longerstaey
(1996); Cornish-Fisher expansions: Zangari (1996Bgllon (1996); the Solomon-Stephens
approximation: Britton-Jones and Schaefer (1999)ment-based approximations motivated by the
theory of estimating functions: Li (1999); saddl@fg approximations: Feuerverger and Wong (2000);
Fourier-inversion: Rouvinez (1997) or Albanese kt(a000) and extreme value theory: Longin
(2000).

Many works have concentrated on the best methooksldag use to compute value at risk. Pichler and
Selitsch (1999) compare five different VaR-methadshe context of portfolio that includes options:
Johnson transformations, Variance-Covariance, dmdet Cornish-Fisher-approximations for the
second, fourth and sixth order. They conclude ttatsixth order Cornish-Fisher approximation is the
best approaches compared to the other approachesauthors also suggest that methodologies that
rely only on the first four moments are rather pddina and Ulmer (1999) compare Johnson
transformations, Fourier inversion, Cornish- Fisapproximations, and Monte Carlo simulation. The
conclusion is the following: Johnson transformasi@me considered not to be a robust choice, Monte
Carlo and Fourier inversion are robust and Corhisler is seen as extremely fast but a less robust

than the two previous approaches in particular witendistribution is really far from the normal.
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Feuerverger and Wong (2000) focus on when or whantm use Cornish-Fisher compared with
Fourier inversion, saddle point methods, or Mongel&@ This paper concludes by an extension of the
methodology that includes higher-order terms. Jascfil999) concentrates on Cornish-Fisher
properties and underlying assumptions in the cardé¥alue at Risk with a particular focus on the
monotony of the distribution function as well asneergence that are not guaranteed. Jaschke
discusses how these assumptions make Cornish-Fsher undesirable and difficult to use. However,
he demonstrates how — when the dataset fits th@iregljassumptions — the accuracy of Cornich-
Fisher expansion is generally more than sufficierstddition of being faster.

In fact, the proper use of Cornish-Fisher expansioould avoid two pitfalls: the existing domain of
validity of the formula and confusing the skewnagsl kurtosis parameters of the formula with the
actual skewness and kurtosis of the distributiohese assumptions have been discussed in
Chernozhukov and al. (2010) and in Maillard (202)mbining these two papers allows now to use
this tool. Chernozhukov and al. (2010) propose ecgaure called increasing rearrangement to
monotonize Cornish-Fisher expansion. In additiorysveo remedy the possible narrowness of the
domain of validity are proposed. Maillard (2012kdis on the distinction between skewness and
kurtosis parameters and actual values. These tperpdnave made our paper possible; indeed, this is
following them that we are now able to compute esthte VaR using Cornish-Fisher.

In real estate field, VaR has been the subject afiynpapers. However, these papers mainly
focus on listed real estate and not on direct estdte. Mainly VaR for listed real estate can maly
previous discussed methods for stocks or bondsu Amal Anderson (2010) concentrate on extreme
risks and the behavior of REITs in abnormal markenditions. They found that no universal
methodology can be recommended for VaR in listed estate. Also the estimation of the risk for
stock and REITs may require different methods. L{@®08) makes use of extreme value theory to
assess the VaR dynamics of ten major securitizisestate markets. The use of extreme value theory
allows the author to consider the stochastic bemasfi the tail. Using this tool, the extreme market
risk are better assess than with the traditiormaidard deviation measure and real estate foreasests
more accurate.

We did not find any paper that concentrates smadifi on VaR in the context of direct real estate
market. However numerous papers and research hanweemtrated on risk management and risk
assessment in real estate. Gordon and Wai Kue(R068) consider VaR as a tool to measure leverage
risk in the case of a real estate portfolio. Thel®f debt of a real estate portfolio is a tramhal issue

in real estate finance. The paper shows how theotid@aR allows a better assessment of risk. In
particular the traditional risk adjusted measuteafBe ratio, Treynor’s and Jensen’s alpha) suftanf

the leverage paradox. Leverage adds risk along tivétpotential for higher returns per unit of highe
risk. Therefore the ratio risk/return does not @enoticeably and is not an accurate tool to measur

the risk inherent to the level of debt. On the canmyt VaR is good tool for leverage risk. Brown and
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Young (2011) focus their work on a new way to measeal estate investment risk. They begin by

refusing the assumption of normally distributedures that flaw the forecasts and decisions. The
nature of risk and how it should be measured isudised. Interestingly, the value at risk is not

retained and the expected shortfall is more recamde. The authors focus therefore their work on

spectral measures which is their final recommendati

From our knowledge, the use of Cornish-Fisher egigannto determine VaR in real estate has not been
subject of large literature. Lee and Higgins (200f)ke use of Cornish-Fisher expansion in the real
estate context. They argue that Sharpe perform@mmoaila neglects two important characteristics of

real estate returns: non-normality and autocoimglaiThey apply Cornish Fisher expansion to adjust

the Sharpe ratio performance to the non-normality.

c) Motivation

One of the major issues — if not the worst — tessglirect real estate VaR is the lack of data
as far as statistics are concerned. On a microehdhle data is somehow available but on a macro
view of the market, we face the difficulty to demith small database. This is particularly true in
commercial real estate where institutional investoostly invest their money. In this sense, thé rea
estate market is comparable to the private equégkat where indexes are built on small number of
transaction. Real estate property index attempégytpegate real estate market information to peovid
a representation of the underlying real estateopmidnce. However this is generally done on a
monthly basis in the best case, on a quarterlyeari-ennually basis sometimes and generally on a
yearly basis. This is largely linked to the sectesidential where many transactions can be obderve
exhibits generally monthly index and commerciall restate (office, activities, shopping centers...)
face more difficulties to deliver frequent index&e. determine the VaR of a real estate portfolia at
threshold of 0.5% (as requested by Solvency Il &aork) using the historical approach, a minimum
of 200 values is needed (which represent 17 yaas monthly index basis). And even with that, the
VaR is the minimum of the series. With a monthlglér, this requires a minimum of 17 years of data.
Alternatively, estimating the distribution of a isar of return (mandatory with variance - covariance
and Monte Carlo methodologies) requires a certaiaumt of data and we one more time face the real
estate lack of data issue. This is therefore inbhediifficult to assess value at risk in preserate
small database. In addition, facing numerous ingletkee choice of the best index can also become an
arduous task (valuation based index, transacti@edandex...) as underlined by Kovac and Lee
(2008). This is why alternative methods that do my too much on strong assumptions must be
envisaged.

Non normality is a fact of life as far as the diuition of property prices or returns are

concerned. Real estate returns are known for disglanon normal return. This has long been
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demonstrated by Myer and Webb (1994) or Young araffG1995). More recent researches such as
Young, Lee and Devaney (2006) or Alcock, Glascaut &teiner (2012) have shown how real estate
returns usually exhibit non normal returns. Re#htesreturns are generally left skewed and exhibits
fat tails. The table 1 presents some basic stdistbout real estate returns over some countries
extracted from IPD database. The table shows #wit @state returns generally have left skewed

returns and fat tails (South Africa and Germanytax@exceptions)

Country South Africa Netherlands Germany Japan Italy France (office) Australia USA UK
Database length 1995-2010  1995-2010 1989-2010  2003-2010  2003-2010  1986-2010 Dec 84-Dec 10Mar 99-Dec 10Dec 86-Dec 10
Index publication Annual Annual Annual Annual Annual Annual Quarterly Quarterly Monthly
Mean 15,9% 9,9% 4,6% 5,2% 6,6% 8,6% 10,4% 8,2% 9,5%
Volatility 7,4% 4,5% 2,1% 7,1% 3,5% 9,5% 9,0% 11,6% 11,9%
skewness 0,76 -0,80 -0,01 -0,34 -0,83 -0,28 -0,09 -2,10 -0,92
Excess kurtosis -0,39 0,36 -0,24 -1,04 -0,72 -0,94 0,27 4,73 1,03

Index: Total return all properties (except France: office)
Table 1: Real estate returns basic statistics (IPD)

These facts have to be considered when determreaigestate VaR. The case of Solvency I
regulation (European regulation for insurers) igtipalarly interesting. They have based the capital
requirement on VaR estimation. They propose eitfeuse of a standard model or of an internal built
model. The standard model for real estate valuiskahas estimated a required capital of 25% fal re
estate investment. This calculation was made onURDall properties total return index. Indeed this
is the one of the only one reliable commercial rhigntndex in Europg However, the committee
itself recognizes the non-normality of real esta®irn but did not try to estimate the real estate
required capital taking into account the observed-mormality. Following these observations, we
seek VaR methodologies that consider the non nagrafl real estate returns in VaR computation.
This is exactly what Cornish Fisher do. CornishhBismakes us able to consider moments of order
higher than two and therefore to consider non nbtynaf distributions. The Cornish-Fisher
approximation transforms the quantile of a norraal In a realized value where skewness and excess
kurtosis are not equal to zero.

In this article we concentrate particularly on direeal estate value at risk and propose the use

of Cornish Fisher expansion to improve traditiomaidel.

The remainder of the paper is organized as follB&ction 2 introduces the Cornish-Fischer
expansion and discusses some technical pointso8etarries out an implementation of the model.

Section 4 discusses some limitations of the modelisfollowed by a conclusion in the final section

2 CEIOPS-DOC-40/09

- 3.160: “One of the most challenging factors @ #pecific calibration is the lack of long timeiss across most European markets”
- 3.169 & 3.171: “All distributions of property teins are characterized by long left fat-tails axcess kurtosis signifying disparity from
normal distribution”



Variance-Covariance Value at Risk and Cornish Fisheadjustment

The distribution used to estimate the VaR of afpbotis determined from the distribution of the
returns of the portfolio or of the sector indexé#hen dealing with real estate, the question which
arises, due to the non traded nature of propeiigeshether the low numbers of data in the index
make it relevant to use and whether this index esgmts the investor’s portfolio. As developed
previously, the main problem faced by real estaaetsioners and academics is the size of database.
Either you invest in listed real estate and in ttdse, real estate is quoted daily and enoughadata
available to compute the VaR of your portfolio,you invest in direct real estate and you have & de
with smaller database. We present first the magéd usethod to determine value at risk in presence of

small database and then the Cornish Fisher adjnstme
2.1) VaR with a Normal assumption: Variance-covariance approach

If the returns are supposed to be normal, it isibtes to estimate the fractile of the distribution
corresponding to the threshold. Therefore the randariable X that represents the value of the
portfolio follow:

X ~N (,u, 02)

The random variable can therefore be written aamdard normal variablg such as:

X=u+eo
If z, is the threshold of probability for the risk measuent, it can therefore be rewritten:

X=u+z,o
The VaR is thus computed as follow:

VaR=E(X)-U, =u-(u+ac)=-ac

With U, the fractile associated to the threshald

2.2) VaR with quasi Normal assumption: Cornish-Fisher expansion

According to Stuart and al. (1999), a large numtfedistributions tend toward the normal
when the number of observatioms tends toward infinity. However for small sampleprmal
distribution is generally not very suitable. In peular in real estate, the absence of centralimadket

price and the low number of transactions amongnthaeets lead to get small sample for direct real



estate. Hence, normality assumption seems to be attong assumption. The idea is to correct the
discrepancies arising from normal quantiles. Bdlgicthis expansion is an approximate relation
between the percentiles of a distribution and i8mants. This approximation is based on the Taylor
series. It relies on the moments of a distributioat deviate from the normal law to determine the
percentiles of this distribution.

The Cornish Fisher expansion has been develope€dmish and Fisher (1937). This
expansion is a formula to approximate fractile odiadom variable based only its first few cumulants
The cumulants of a random variatdeare conceptually similar to its moments. They deéned as

those value, such that the identity

vy _~ E(X)t'
exp(; r!} ,Zj r!

holds for allt. If a distribution is fitted by making the firstaments of the fitted distributions agreed,

it is, in principle, possible to calculate quargilef the fitted distribution and to regard these as
approximations to the corresponding quantiles efabttual distribution. <So we have estimators ef th
actual quantiles which are functions of these mdmddsually these functions are very complicated
and not easily expressible in explicit form. Howevia the case of independent and identically
distributed random variables it is possible to ob&xplicit expansions for standardized quantiles a
functions of corresponding quantiles of the unitmal distributions. In these expansions the terras a
polynomial functions of the appropriate unit normabntile, with coefficients that are functionstioé
moment-ratios of the distribution. This approachdieto an analytic approximation of the quantile as
long as the moments of the distribution are knofwan example, the Cornish-Fisher approximation

taking into account the first sixth moments yietos
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a—quantile= z, +%(z§ —1)E(X3)

+2i(23—3z )E(X“) —é(223—52 )E(X3)2

\% 3% 3 -5,
2L (2o e 9e() Lot el el
ﬁ(lZzg—w +19E(X°)

+%(z -10Z + 1%, ) E(X°)

—%(222—17;% 2%, )E(X?) E(X?)

3—;4(325—242 + 29, )E(X*)’

ﬁ(14z§—103z +1072,) E(X?) E(X*)

77176(25225 - 1688 + 1514, )E(X?)" +-.-

where E(xn)denotes the moment of order n afid is the percentile corresponding to tHED,1).

Details on the expansions are reported to JohnsoiKatz (1970).

Taking into account the kurtosis excess and ndgkgell non significant terms, the Cornish-Fisher

expansion using the first four moments of the distron gives then:

1, ., 3 1, 3 n_ 1 3 3
q, DUa+E(Ua—1)E(X )+ﬂ(ua—aua)E(x )—36(2%— 2, )E(X°)

2

where E(Xs) is the asymmetric coefficient (S) ar%w) the excess kurtosis (K-3) of a distribution, if

X is centered and reduced. This can be rewritten
q, 02, +2(2 -8+ (Z-%,) K-9-( % - &)
6 24

The VaR is then given by:
VaR= +q,0

The VaR calculated using Cornish Fisher expanseeks to modify the multiple associated to the
normal law in order to take into account the moraeot order higher than two of the return

distributior?. We illustrate below the effect of non normality guantile below.

% Instead of determining the value of this multipsociated to the Cornish Fisher expansion, maaydial institution increase the multiple
associated the normal law in order to take intmaotthe moments of order 3 and 4. As an exampdenultiple associated to a threshold
of 5% is -1,645 for the normal law. In order to siafer the leptokurtosis of the returns distributsmme financial institutions use a multiple
equal to 2 or 3. This methodology is not scientiil Cornish Fisher expansibas to be preferred.
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For a left skewed distribution, the smallest guastare lower (higher VaR) than the gaussian

ones. It is the contrary for a right skewed disttin. The first point is illustrated by Figure Wéere

a skewness of -1 leads tgog= -1.9103 while gos = -1.6449. We have as wel} &, = -3.3049 and
Zo.001= -3.0902. On Figure 1b, S=0.5, we get for instames = -1.4980.
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Figure 1. Cornish-Fisher and normal quantiles accordintdhéoskewness coefficient

A leptokurtic (platokurtic) distribution implies\eer (higher) smallest quantiles as shown on Figare

(2b). The highest correction for the VaR will heppin the case of a left skewed and leptokurtic

distribution as illustrated on Figure 2bis.
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Figure 2: Cornish-Fisher and normal quantiles accordindnéokurtosis coefficient

The use of Cornish-Fisher should avoid a pitfafle texisting domain of validity of the
formula. There is a domain of validity for the uskethe Cornish-Fisher expansion (see Maillard,
2012). To be valid, this transformation has to lpeckive. It is a necessary and sufficient condititi

implies that the derivative of) relative to z is non null. If the transformation is not bijectjwbe
order in the quantiles of the distribution would be conserved. This can be written
& K & 1- K 55?
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Figure 2bis: Cornish-Fisher quantiles, left skewed and leptti&uwlistribution
S=-1.5;K=6

A consequence of the non bijection of the Cornighér expansion is the quantile function is not
monotonic, which violates an obvious monotoniciguirement. This arises because the polynomials
which are in the transformation are non monotoibernozhukov, Fernandez-Val and Galichon
(2010) propose a procedure to restore the mondtpwialled the rearrangement. As they mention and
demonstrate, the rearrangement necessarily bifregedn-monotone approximations closer to the true
monotone target function. Figure 3 illustrates fhriscedure for a skewness of 0.8 and a kurtosis of
(an excess of kurtosis equal to -1). The entirefedftion estimation is presented in appendicasréig

A.3. These parameters correspond to a platokurtaight skewed distribution function.
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Figure 3: Rearrangement procedype<0.25)

As the kurtosis coefficient has to be greater tBan order to have the bijection (this is a necessa
condition), the quantile function is not monotoimcthis example (see Figure 3). The discreapency
from the two quantile functions appears for the lfatiprobabilities which are the most important fo
the V.a.R. computation. The non rearranged quamdiection could be more erratic as the one
presented below (see for instance Figure 1 in Giadwkov, Fernandez-Val and Galichon, 2010). Let

us denoteqa the corrected quantile of level At 0.1%, q,=-1.4 while z, is clearly biased and is

equal to -0.3.

Application

We study the UK real estate return from Decemb@&71® December 2010, which leads to
277 observations. We study the database and themnmdee the quantiles and value at risk at a
threshold of 5, 1, 0.5 and 0.1%. The 0.5% is thredtold required by solvency Il regulation. The
values are annualized monthly returns.

The index and the corresponding returns are predant Figure 4. It exhibits clearly both the

90’ overproduction crises and the subprime periods.
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Figure 4: Real estate index and returns from December 1®8®&tember 2010

The distributions of the returns differ significgnacross the periods as illustrated on Figure &.ci

the database in periods representing various efatee cycle. This corresponds to the first 10-gear

period, the middle 10-years and the last 10-year®gs that run from December 2000 to December

2010.
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Figure 5: Real estate returns pdf and cdf according to éneg

If the middle 10-year period distribution is mom@ncentrated (from June 1994 to June 3004), the last
ones is clearly left skewed with high negative mesu(subprime crises). These negative returns will

lead to a different analysis of the risk as showable 1 when analyzing the descriptive statistics

presented in Table 1.

a.p0s 010 015 020 Q.35

Periods Mean s.d. Min max S K Q1 Q2 Q3
1987-12 / 2010-12 0.0215 0.1131 -0.3154 0.2439 -0.75p9 3.7935 -0.0436.0310 0.1010
1987-12 / 1997-12 0.0253 0.1090 -0.139¢4 0.2439 0.50%8 2.0611 -0.062®.0028 | 0.1091
1994-06 / 2004-06 0.0297 0.0417 -0.0468§ 0.1580 0.4661 3.9611 0.0017.0298 0.0555
1990-12 / 2010-12 0.0076 0.1310 -0.3154 0.1543-1.1743| 3.3457 | -0.0053 0.0281 0.108
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Table 2: Real estate monthly returns pdf and cdf accortbrthe period

As mentioned previously, a long dataset is reconttedrio compute the VaR, here we decide
to compute our results on a 15 years basis (180ntin order to take into account more than one
cycle and in order to obtain results that are notdrratic. Taking this recommendation into account
will lead us using a 15-year rolling period to cangthe moments and the distribution of the returns
Each of the 97 periods contains 180 observatione.eBtimation of the distribution in December 2002

is made using the returns from December 1987 teDeer 2002.

Moreover, Figure 6 gives the 95% bootstrap confidaterval of the mean and standard
deviation and mainly, those of the skewness anduhi®sis. The mean and the standard deviation are
not table at all. The returns are increasing froec&nber 1999 to the subprime crises (during the
normal increase and the bubble), and are fallingndd@he evolution of the standard deviation seems
to be opposite. At the contrary the evolutionSaihdK are more dichotomous: i) nearly stable around
0 and 3 before the subprime crises, ii) highly Efewed $0) and leptokurtic left skewedK$3)
after. More precisely, let us remark that until Beber 2001, the distribution is platokurtic (the
kurtosis coefficients are significantly differembof 3). Moreover form December 1997 to December
2007, the skewness is either null or significapibgitive (right skewed, due to high returns asrdyri

the bubble period for instance).

Bandwidth = 180 montihs Bandwidth = 180 months

—0.02 —2

Figure 6: mean, strandard deviation, skewness and kurtos@@ing to the 15-year period

GivenSandK for each 15-year rolling period, we are able tmpate the Cornish-Fisher correction of
the quantiles. Figure 7 presents the results 58, 1%, 0.5% and 0.1% quantiles of the real estat
returns distribution. The dotted lines correspamthe quantiles obtained without using the coroecti
proposed by Chernozhukov, Fernandez-Val and Gali¢@610). The correction is noticeable during
the first months of the computation and (from Deben?002), during the bubble period and after the
crash. In particular, it can be noticed how impuatrtdois correction is when the threshold decrease.
This correction is more relevant when the lowermiles (for the 0.5% threshold of Solvency I

guantile for instance). For each of the four anadyguantiles, the “true” one is often lower thae th
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Gaussian ones until the subprime crises. Thisiigcpéarly obvious for the 0.5% and 0.1% quantiles,

which the more interesting quantiles for VaR coragioh. Except for the 1% quantile, we get

- In December 2002: the quantile is less negative tha Gaussian one (less risky);

- From December 2002, the quantile decreases in twdeach the Gaussian one, at the end of
2004;

- From the end of 2004 to December 2007 (bubble gerise get again less negative quantiles
than the Gaussian one;

- In 2007-2008, a fall of the quantile value leads tmore risky situation;

- In 2008-2009, the quantile level increases a bitdbill remains below the Gaussian value.

(more pronounced for the lowest quantiles).

Normal quantile and corrected Cornish—Fischer quantiles Normal quantile and corrected Cornish—Fischer quantiles
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Figure 7: 5%, 1%, 0.5% and 0.1% quantiles of the real estdtens distribution

according to the 15-years period

We now compute the VaR given the same threshold avit5 years window. The interesting point is to
compare our results with the ones obtain by theletgr. Solvency Il regulation requires a 25% of
required capital for real estate investment. Thaluation was based on UK all properties totalnetu

database with a threshold of 0.5%. Our results @6% are concordant with those of the regulators.

The interesting point is to notice that the valoiatof regulators is close to the one obtained with
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Gaussian assumption. However taking into accoumhems of order higher than 2 leads to an higher
VaR and therefore to higher required capital. Tieisults show in particular how essential it is to
consider skewness and kurtosis to properly assaet&state value at risk. The Gaussian assumgion i

really not adequate.

a= 5.0 %, Bandwidth = 180 months a= 1.0 %, Bandwidth = 180 months
24 40

— =— Gaussian VaR — — Gaussian VaR
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Corrected VaR at orders 8 and 4 s 50 [ | seeeses Corrected VaR at order 3
§ Corrected VaR at orders 8 and 4

Figure 8: 5%, 1%, 0.5% and 0.1% Gaussian and corrected €oFigher VaR in base 100 according
to the 15-years period

We focus in Figure 9 on the importance of the dadeldength. The length of the period is key when

assessing VaR. The VaR is the maximum loss at esltiotd level for predefined length in time.

However, facing small database issues lead to miadiees about length of time.

Nermal gquantile and corrected Cornigsh—Fischer guantiles
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V.

Figure 9: Gaussian VaR and Cornish-Fisher corrected VaR@and 15 years

Like all the methodologies proposed for VaR estiomgtCornish-Fisher methods suffer from certain

limitation. We discuss briefly the limitation ofétmethodology.

Limitation

The use of Cornish-Fisher expansion for VaR shoersam limitations. Some assumptions
such as quasi-Gaussian innovations, monotony aradirgtic approximation can be questioned.
Britton-Jones and Schaefer (1999) show that quadagproximations can lead to large errors when
computing VaR. In addition the Taylor-approximatibalds only locally which can be a huge issue
when modeling extreme events. Embrechts et al.Q)La&o show that the Gaussian framework does
not allow to model joint extremal events. Chernddw and al. (2010) demonstrate how
rearrangement can solve the monotonic assumptisste that can lead to important shortcomings.
Despite these valid critiques on Cornish Fisheaesppn model, there are good reasons for reakestat
practitioners, banks or insurances to implemeaioihgside other models in particular in the retadtes
context where the dataset are modest. When youldakeof data, no methodologies provide correct
outputs. The statistical assumption of quasi-Gamsdistribution can explain a part of the errors bu
the lack of data also explains part of errors. Way in which this VaR model can be assessed
statistically is by comparing its performance wttie historical model and determining the number of
times VaR exceeded with what is expected for thdehddowever, on more time, there is insufficient
historical data to perform a backtest and so aitatige assessment has to be done instead.

Obviously VaR is a risk measurement that only takés account the probability of being
below the threshold level. It does not does nosiar the values below this level or their averdge.
addition, VaR is a poor measure for asymmetricrithistion of returns. It can also exhibit convexity
issues. This is why other risk measurement has peaposed. Among them expected shortfall as
defined by Acerbi and al. (2001) (also called ctindal VaR: CVaR) or the TailVaR in Artzner and al.
(1999). Their application in real estate financé e the subject of further research and in paldic

the application of Cornish-Fisher in their context be the subject of a future paper.
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V.

Conclusion

Based on the IPD monthly capital return from Decemb®987 to December 2010 data, the
research shows that the UK direct property data wdsstantial departures from normality. The
research focuses on moments of order higher tharahe proposes a way to incorporate them in VaR
assessment and therefore to get over the classitcghof Gaussian hypothesis. In particular the us
of rearrangement procedure as demonstrated by @ttarkov, Fernandez-Val and Galichon (2010)
allows to overpasses the non monotonic issue wietransformation is not bijective. This way, we
are able to apply Cornish-Fisher expansion toestdte returns in order to determine more accyratel
(taking into account skewness and kurtosis) the&/ak Risk of a portfolio.

Our results show that methodologies that do nosiden skewness and kurtosis to compute
VaR lead to a bad estimation of the risk. In paitg in presence of skewed return and fat tailgwh
is the case in real estate market, we obtain arrvatiiation of the VaR which can lead to non
adequate capital requirements. This research es¢subh number of VaR and quantile to examine the
effects thresholds have on the risk measure pediocer The results indicate that Cornish-Fisher
methodology is more accurate when the threshaoiatliger low.

In terms of professional application, the expangsiombined with rearrangement procedure
could be of the interest of professional. The espgancan be used and the methodology replicated by
professionals to determine the VaR of their poidfar to determine their required capital using an
internal model. In particular, professionals ineelsin secured properties only can be interested in
applying this methodology to an index representing market in which they invest. They might
demonstrate that the risk taken for investing icused properties is below the risk of the market an
therefore their required capital is below the ohthe standard model.

The methodology is particularly robust for disttibns that are non-normal and can therefore

apply to hedge fund industry or private equity.
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Appendices :

1. We show that since 2007, the UK real estate retcamsiot be considered as normal.
However, the returns were normal from 2003 to n@2 on a 15-years window.
Figure A.1 presents thep-values of the Jarque Beoranality test on a 15-years
window.
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Figure A.1.a: p-values of the real estate returns for the JaBgrea normality test

For information, the same results are displayed &0-years windows basis. It is clearly more egrati
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Figure A.1.b: p-values of the real estate returns for the JaBgrea normality test
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We present below another correction of the quamtihen the tails of the distribution

are fat.
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Figure A.2: Quantile estimation in presence of tails
The rearrangement procedure allows to get overtrhditional pitfalls faced by
Cornish Fisher expansion. This is illustrated ie tigure A.3. Figure 3 in the paper is
an enlargement of the A.3 figure on the lowest tjlesa
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Figure A.3: Rearrangement procedure illustratiarx0.25)
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