A Comparative Analysis of Dutch House Price Indices

Marc K. Francke, Tessa Kuijl and Bert Kramer

Ortec Finance Research Center
University of Amsterdam Business School

June 27, 2009

ERES Conference, Stockholm
Motivation

- Analyze impact of **specification level** of house price index on **risk-return** profile of housing corporations
 - local indices
 - house type specific

- Four different suppliers of house price indices in the Netherlands
 - Dutch Brokerage Organization NVM
 - Statistics Netherlands (CBS) / Land Registry (Kadaster)
 - ABF
 - OrtaX

- Focus on comparison of returns:
 - averages
 - volatilities (standard deviations)
 - autocorrelations
Motivation

Price changes in percentages for the Netherlands

<table>
<thead>
<tr>
<th>Period</th>
<th>NVM</th>
<th>CBS</th>
<th>ABF</th>
<th>OrtaX</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008Q1</td>
<td>0.0</td>
<td>1.0</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>2008Q2</td>
<td>1.9</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2008Q3</td>
<td>-0.7</td>
<td>1.2</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>2008Q4</td>
<td>-2.5</td>
<td>-0.7</td>
<td>-1.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>2009Q1</td>
<td>-3.1</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-1.1</td>
</tr>
<tr>
<td>Total</td>
<td>-4.4</td>
<td>0.7</td>
<td>0.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

![Graph showing price changes over time for various entities: ABF, CBS, OrtaX, and NVM. The graph spans from 1995 to 2010 with price levels ranging from 125 to 275.](image)
Outline

1. Motivation
2. Data
3. Price Index Construction Methods
 - Simple Statistics
 - SPAR
 - Hedonic
 - Repeat Sales
 - Comparison of methods
4. Comparison of Price Indices
 - Yearly
 - Quarterly
 - Monthly
5. Conclusions
House price index data

Two main data providers for selling prices in the Netherlands:

1. **NVM**: Dutch Brokerage Organization; from 1985 current market share: 70%
 - date of preliminary sale contract
 - asking price history, time on the market, transaction price
 - including all housing characteristics

2. **Kadaster**: (Kadaster/CBS, OrtaX, and ABF indices)
 - Availability of all prices in the Netherlands from 1993 (3.5 mln)
 - The only characteristics are
 - address details
 - house type
 - lot size
 - transaction date, price and circumstances (transaction between relatives, house is rented out, buyer is a legal entity, etc.)
 - Transaction date: date of legal transfer of property
 \[
 \text{Date}_{\text{Transfer property}} \approx \text{Date}_{\text{Preliminary sale contract}} + 2 - 6 \text{ Months}
 \]
Price Index Construction Methods

Table: Index methodologies.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVM</td>
<td>Median</td>
</tr>
<tr>
<td>CBS</td>
<td>SPAR (Sales Price Appraisal Ratio)</td>
</tr>
<tr>
<td>ABF</td>
<td>“Hedonic Price Model”</td>
</tr>
<tr>
<td>OrtaX*</td>
<td>Repeat sales</td>
</tr>
</tbody>
</table>

* OrtaX also provides hedonic price indices, however in this research only the repeat sales index is considered.
Simple Statistics: NVM

- Median selling price is calculated in period t and $t + 1$ for each market segment
- A weighted average of the segment medians is calculated
 - weights: the relative number of sales

The relative price change equals

$$\left(\frac{M_{t+1}}{M_t} - 1\right) \times 100\%,$$

where

$$M_t = \frac{n_{1,t} \times M_{1,t} + \cdots + n_{B,t} \times M_{B,t}}{n_{1,t} + \cdots + n_{B,t}}.$$
Sale Price Appraisal Ratio (SPAR): CBS / Kadaster

SPAR is given by

\[
\text{Index}_{\text{SPAR},t} = \frac{\sum_{j=1}^{n_t} T_{jt} / \sum_{j=1}^{n_t} A_{j0}}{\sum_{j=1}^{n_0} T_{j0} / \sum_{j=1}^{n_0} A_{j0}}
\]

- \(T \) is the transaction price (not in logs)
- \(A \) is the appraised value (WOZ-value); to correct for the differences between properties
- for each property an appraised value must be available
- (almost) all transaction prices are used
- WOZ-value is not always market value because of fictions
- Easy to construct
- Constant quality index
Hybrid method: ABF (WOX index model)

Four steps

1. *Hedonic* price model per COROP region
2. *Comparability* model per COROP region: comparability coefficient between 0 and 1
3. A typical house is selected per zipcode: the value is determined by a weighted average of corrected sales prices
 - corrected sales price: from step (1)
 - weights: from step (2)
4. Price index for a segment is calculated by aggregating the monthly values
Hybrid method: ABF (WOX index model)

WOX index model
- a constant quality index
- a total housing stock index
 - not only transacted houses, or owner-occupied houses
- vulnerable to specification errors
 - functional form
 - omitted variables
- ad hoc method:
 - combining hedonics and comparables
 - how to compute confidence bounds for price changes?
 - re-estimating the model every month can result in unexpectedly varying coefficients/indices over time
Local linear Trend Repeat Sales Model (OrtaX)

Case and Shiller (1987, 1989) repeat sales model

\[y_{it} - y_{is} = \beta_t - \beta_s + \varepsilon_{it} - \varepsilon_{is} + \omega_{i,s+1} + \cdots + \omega_{i,t}, \]

- \(y_{it} - y_{is} \): difference in log transaction price
- \(\beta_t \) is price level at time \(t \)
- Assumptions:
 - characteristics do not change over time
 - Influence of characteristics is constant over time
- Smoothing:
 - Goetzmann (1992): periodic return is normally distributed:
 \(\Delta \beta_t \sim N(\kappa, \sigma^2) \)
 - Local linear trend repeat sales (Francke, 2009): varying slope:
 \(\Delta \beta_t \sim N(\kappa_t, \sigma^2) \), and \(\kappa_t \) follows a random walk, \(\kappa_{t+1} = \kappa_t + \eta_t \).
Local linear Trend Repeat sales model

- It is a constant quality index
- **All single transactions are omitted** (approx. 40% remains).
- **Sample selection bias** Properties with high number of transactions may not be representative.
 - Solution: Heckman’s (1979) procedure, Gatzlaff and Haurin (1997)
- **Revision** Due to the repeat sales structure updating of index produces “backward adjustments” in the historical return series as new “second sales” link back to earlier “first sales”.
 - Local linear trend model reduces considerably revision effect.
- **Flips** Properties sold within short time periods (say 6 months) can have extreme price increases.
 - Flips can either be removed from sample or explicitly modeled.
- **Volatile** In small samples the estimated price trend can be very volatile, due to noise in the transaction prices.
 - Local linear trend model reduces effect of transaction noise.
Comparison of transaction based index methods

<table>
<thead>
<tr>
<th></th>
<th>NVM</th>
<th>CBS</th>
<th>ABF</th>
<th>OrtaX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction date</td>
<td>Sales contract</td>
<td>Legal transfer</td>
<td>Legal transfer</td>
<td>Legal transfer</td>
</tr>
<tr>
<td>Data</td>
<td>Subsample</td>
<td>All</td>
<td>All</td>
<td>Subsample</td>
</tr>
<tr>
<td>Sample selection bias</td>
<td>Less</td>
<td>Less</td>
<td>Less</td>
<td>More</td>
</tr>
<tr>
<td>Constant quality</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Appraised values required</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Detailed property information required</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Vulnerable to specification error</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ass. of no change in characteristics</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ass. of no change in impact of char.</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Revisions</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Comparison of Price Indices

Table: Details on start, frequency, region and house type classification of different indices.

<table>
<thead>
<tr>
<th></th>
<th>Start</th>
<th>Frequency</th>
<th>Region</th>
<th>House Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVM</td>
<td>1985Q1*</td>
<td>Q/Y</td>
<td>NVM/NL</td>
<td>T, R, C, S, D, A</td>
</tr>
<tr>
<td>CBS</td>
<td>1995M1</td>
<td>M/Q/Y</td>
<td>PROV/NL</td>
<td>T, SF, R, C, S, D, A</td>
</tr>
<tr>
<td>ABF**</td>
<td>1995Q1</td>
<td>Q/Y</td>
<td>COROP/PROV/NL</td>
<td>T, SF, A</td>
</tr>
<tr>
<td>OrtaX</td>
<td>1993M1</td>
<td>M/Q/Y</td>
<td>NVM/COROP/PROV/NL</td>
<td>T, R+C, S, D, A</td>
</tr>
</tbody>
</table>

* Also available from 1972 on a yearly basis.
** Publicly available.

Effect of Transaction Noise

- Expectation: No effect
- Standard deviation: Increase
- Autocorrelation: Decrease
Comparison of Price Indices

COROP Regions and Provinces

Francke, Kuijl, and Kramer (Ortec Finance)
Yearly price changes

<table>
<thead>
<tr>
<th></th>
<th>All houses</th>
<th>NVM 72-08</th>
<th>NVM</th>
<th>CBS</th>
<th>ABF</th>
<th>OrtaX</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>6.5%</td>
<td>7.0%</td>
<td>8.4%</td>
<td>7.9%</td>
<td>8.2%</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>9.7%</td>
<td>5.2%</td>
<td>5.1%</td>
<td>4.7%</td>
<td>4.4%</td>
<td></td>
</tr>
<tr>
<td>ACF(-1)</td>
<td>0.617</td>
<td>0.592</td>
<td>0.758</td>
<td>0.754</td>
<td>0.799</td>
<td></td>
</tr>
<tr>
<td>ACF(-2)</td>
<td>0.221</td>
<td>0.232</td>
<td>0.421</td>
<td>0.418</td>
<td>0.516</td>
<td></td>
</tr>
</tbody>
</table>

- The NVM has a lower average rate of return
- The volatility almost doubles when the sample period is extended to 1972–2008.
- Variation over house types
 - Average: from 7.7% (row houses) to 9.8% (detached houses)
 - Volatility: from 4.4% (row houses) to 6.6% (detached houses)
- No large differences between different methods, except for detached houses
 - CBS: average and volatility: 9.8% and 6.6%
 - OrtaX: average and volatility: 8.9% and 5.2%
Quarterly price changes

Comparison ABF and OrtaX price changes over COROP regions (40)

- Large variation between COROP regions:
 - Average return varies from 1.54% (1.45%) to 2.25% (2.20%)
 - Volatility varies from 1.12% (1.35%) to 1.51% (2.79%)

- There is some spatial clustering in the average return rate.
 - High average returns can be found in the Amsterdam region (21–24), Friesland (4–6) and Brabant (35–36), all > 2.0%.
 - On the lower end the regions Limburg (37–39) and Flevoland (40) can be found.

- On average the volatility of the ABF series is much higher than the OrtaX series, 1.96% versus 1.12%.
 - The ABF series show some negative autocorrelation for the first time-lag. A possible explanation is the impact of transaction noise in the index: negative autocorrelations tend to coincide with large volatilities. A large price increase (decrease) in one period is compensated for in the next period, resulting in negative autocorrelations.
Monthly price changes

Comparison CBS and OrtaX price changes over provinces (12)

- Differences in average return rates between CBS and OrtaX are small
- Differences in average return rates over provinces are substantial
 - From 136% (Limburg) to 222% (Noord-Holland) price increase in the period 1995–2008
- Differences in volatilities between CBS and OrtaX are large
 - Average volatility CBS: 1.23%
 - Average volatility OrtaX: 0.36%
 - Volatility CBS series ranging from 0.77% to 1.79% over provinces (average rate of return is 0.63%)
 - Volatility OrtaX series ranging from 0.28% to 0.44% over provinces
Monthly price changes

Comparison CBS and OrtaX price changes over provinces (12)

- The CBS series can be characterized by having large standard deviations and negative first time-lag autocorrelation;
 - for row houses between 0.88% and 2.35%,
 - for semi-detached houses between 1.46% and 4.13%,
 - for detached houses between 2.18% and 5.41%, and
 - for apartments between 0.97% and 6.93%.
- The impact of transaction and appraisal noise is apparently higher, as the number of observations can be quite small (24 a month)

- The OrtaX series can be characterized by having relatively small standard deviations and relatively large autocorrelations.
 - The standard errors are ranging between 0.31% and 0.43% for row houses,
 - for semi-detached houses between 0.24% and 0.45%,
 - for detached houses between 0.28% and 0.54% and
 - for apartments between 0.29% and 1.28%.
 - The autocorrelations are approximately 0.95 for time-lag 1, 0.90 for time-lag 2 and 0.65 for time-lag 12.
Price Index for thin market

CBS/Kadaster Monthly Price Index for Apartments in Friesland

Monthly Price change in %

Francke, Kuijl, and Kramer (Ortec Finance)
Conclusions

- NVM index
 - leading the other indices
 - no constant quality index: unreliable in thin markets

- Other index series
 - Differences in averages and volatilities over regions/house types
 - Differences between methods
 - OrtaX series is the only series where monthly/quarterly/yearly volatilities are consistent

<table>
<thead>
<tr>
<th>Volatilities (all houses)</th>
<th>CBS</th>
<th>ABF</th>
<th>OrtaX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearly</td>
<td>5.10%</td>
<td>4.70%</td>
<td>4.40%</td>
</tr>
<tr>
<td>Quarterly (annualized)</td>
<td>8.07%</td>
<td></td>
<td>4.56%</td>
</tr>
<tr>
<td>Monthly (annualized)</td>
<td>15.80%</td>
<td></td>
<td>4.41%</td>
</tr>
</tbody>
</table>

- Companion paper: “The impact of house price index specification levels on the risk profile of housing corporations” (Session 6E - Housing)